Rodrigo Casanova dos Santos Wrege

ISFETs: TEORIA, MODELAGEM E CHIP PARA CARACTERIZAÇÃO

Dissertação submetida ao Programa de Pós-Graduação em Engenharia Elétrica da Universidade Federal de Santa Catarina para a obtenção do Grau de Mestre em Engenharia Elétrica. Orientador: Prof. Dr. Carlos Galup-Montoro Coorientadora: Prof.^a Dra. Janaina Gonçalves Guimarães

Florianópolis 2018 Ficha de identificação da obra elaborada pelo autor, através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Wrege, Rodrigo Casanova dos Santos ISFETs: : Teoria, modelagem e chip para caracterização / Rodrigo Casanova dos Santos Wrege ; orientador, Carlos Galup-Montoro, coorientadora, Janaina Gonçalves Guimarães, 2018.
91 p.
Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós Graduação em Engenharia Elétrica, Florianópolis, 2018.
Inclui referências.
1. Engenharia Elétrica. 2. ISFETs. 3. Modelagem do ISFET. 4. Sensor de pH. 5. Aplicação de ISFETs.
I. Galup-Montoro, Carlos. II. Guimarães, Janaina Gonçalves. III. Universidade Federal de Santa Catarina. Programa de Pós-Graduação em Engenharia Elétrica. IV. Título. Rodrigo Casanova dos Santos Wrege

ISFETs: TEORIA, MODELAGEM E CHIP PARA CARACTERIZAÇÃO

Esta Dissertação foi julgada adequada para obtenção do Título de "Mestre em Engenharia Elétrica" e aprovada em sua forma final pelo Programa de Pós-Graduação em Engenharia Elétrica.

Florianópolis, 03 de Agosto de 2018.

Prof. Bartolomeu Ferreira Uchoa Filho, Dr. Coordenador do Curso

Prof. Carlos Galup-Montoro, Dr. Orientador Universidade Federal de Santa Catarina

Prof.⁴ Janaina Gonçalves Guimarães, Dr.^a Corientadora Universidade Federal de Santa Catarina

Banca Examinadora:

Prof. Jefferson Luiz Brum Marques, Dr. Universidade Federal de Santa Catarina

Prof. José Henrique Maia Campos de Oliveira, Dr. Universidade Federal de Santa Catarina

Eng. Murilo Pilon Pessatti, Me. Chipus Microeletrônica

Este trabalho é dedicado à minha mãe, Gislaine Wrege, e à memória de meu pai, João Alberto Wrege.

AGRADECIMENTOS

A Deus por estar sempre a meu lado em todos os momentos da vida.

À minha mãe Gislaine Wrege, ao meu pai João Alberto Wrege (em memória), e à minha irmã Raquel Wrege pela ajuda, incentivo e por sempre acreditarem em mim.

Aos demais familiares, em especial à prima Luciana Rassier pelo excelente acolhimento e ajuda para me adaptar à cidade.

À minha namorada Eliete Aguiar pelo carinho, companheirismo e apoio.

Ao professor Dr. Carlos Galup-Montoro e professora Dra. Janaína Guimarães pela orientação e aos demais professores envolvidos neste projeto Dr. Marcio Schneider, Dr. Jefferson Marques, Dr. Oscar Bruna-Romero e Dr. José Henrique Maia Campos de Oliveira pelas contribuições.

Ao meu professor de graduação Dr. Márcio Bender por incentivar a realização do mestrado nesta universidade.

Aos colegas pela parceria e ajuda prestada durante a fase de projeto.

À equipe diretiva da Empresa Chipus Microeletrônica S.A. e demais integrantes por disponibilizar a tecnologia e suporte para a fabricação do *chip* o qual possui grande importância para o prosseguimento desta pesquisa, e pelas contribuições e participação na banca desta dissertação do CEO da Empresa, Engenheiro Me. Murilo Pilon Pessatti.

À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pela bolsa de estudos, possibilitando a realização do mestrado e consequentemente deste projeto.

E a todos os demais que de várias formas contribuíram para esta pesquisa.

RESUMO

ISFETs são dispositivos capazes de medir a concentração iônica de uma solução e sua estrutura baseia-se na de transistores MOSFET. Vêm sendo aplicados em diversas áreas, como análise de fluidos químicos, sequenciamento de DNA, detecção de vírus e de bactérias. Seu princípio de funcionamento foi apresentado na década de 1970, mas somente em 1999 foi descrita uma forma de implementá-los utilizando tecnologia CMOS padrão. Porém, ainda nos dias atuais, tem-se necessidade de estudos que expliquem e modelem corretamente certas não-idealidades dos ISFETs, além de desenvolver arquiteturas que reduzam tais efeitos. Portanto, neste trabalho são apresentados fundamentos sobre ISFETs, abrangendo suas não-idealidades e principais aplicações. O modelo do ISFET é abordado e implementado no software Matlab®. Além disso, é apresentado o projeto de um chip desenvolvido no software Virtuoso® que possibilitará caracterizar os ISFETs na tecnologia SilTerra D18V. Resultados de simulação estimam sensibilidade média de 45.3 mV/pH na faixa de pH 1 a 10 para os dispositivos projetados. O chip foi enviado para fabricação nesta tecnologia em área de silício gentilmente disponibilizada pelas empresas Chipus Microeletrônica S.A. e SilTerra Malaysia Sdn Bhd.

Palavras-chave: ISFETs. Modelagem do ISFET. Sensor de pH. Aplicação de ISFETs.

ABSTRACT

ISFETs are devices capable of measuring ionic concentration of a solution and their structure is based on MOSFETs. They have been used in various applications such as chemical analysis, DNA sequencing, viruses and bacteria detection. The basic idea behind the ISFETs emerged in 1970, but a way to implement it on a standard CMOS process was only described in 1999. However, a deeper understanding of some of its non-idealities and the development of architectures to reduce the effects of these non-idealities are still needed. Therefore, this work summarizes the basic principles of ISFET operation, including non-idealities and some applications. The ISFET model is introduced and implemented on Matlab[®]. Furthermore, the details of a chip designed on the Virtuoso[®] platform, aimed at characterizing the ISFETs on SilTerra D18V technology, is presented. Simulation results estimate an average sensitivity of 45.3 mV/pH in the pH range 1 to 10 for the projected devices. The chip, sent for fabrication on this technology, was kindly supported by Chipus Microeletrônica S.A. and SilTerra Malaysia Sdn Bhd

Keywords: ISFETs. ISFET modelling. pH sensor. ISFET applications.

LISTA DE FIGURAS

Figura 33 - Perfil de cargas e de potencial na camada de
Helmholtz
Figura 34 - Perfil de cargas e de potencial na camada de Gouy-
Chapman
Figura 35 - Perfil de cargas e de potencial no modelo de Gouy-
Chapman-Stern
Figura 36 - Detalhes do <i>chip</i> projetado

LISTA DE TABELAS

Tabela 1 - Sensibilidade de ISFETs em tecnologias padrão	45
Tabela 2 - Parâmetros da passivação SilTerra D18V	57
Tabela 3 - Caracterização transistores 5V SilTerra D18V	58
Tabela 4 - Parâmetros utilizados na simulação	64
Tabela 5 - Preços e características de tecnologias HV	83
Tabela 6 - Conectividade dos pads do chip.	88

LISTA DE ABREVIATURAS E SIGLAS

ACM - Advanced Compact MOSFET

AMS - Austriamicrosystems

CDS - Correlated double sampling

CMC - Canadian Microelectronics Corporation®

CMOS - Complementary Metal Oxide Semiconductor

CMP - Circuits Multi Projets®

CNM - Centro Nacional de Microelectrónica de Barcelona

COT – Rodada dedicada (*Customer Owned Tooling*)

CVCC - Constant-Voltage, Constant-Current

DIL - Dual in line

DNA – Ácido desoxirribonucleico

DRC - Design Rule Checks

EPH - Eletrodo padrão de hidrogênio

ESD - *Electrostatic discharge*

FPN - Fixed-pattern noise

HV – High Voltage

ISFET - Ion Sensitive Field Effect Transistor

IUPAC - International Union of Pure and Applied Chemistry

LAMP - Loop-mediated Isothermal Amplification

MEP - MOSIS Educational Program

MOSFET - Metal Oxide Semiconductor Field Effect Transistor

MOSIS - MOS Implementation System

nISFET – ISFET tipo N

nMOS - MOSFET tipo N

nto_5 - MOSFET tipo N de óxido espesso da tecnologia SilTerra D18V

OHP - Outer Helmholtz plane

PCB - Printed circuit board

PCR - Polymerase chain reaction

PDK - Process design kit

PGA - Pin Grid Array

pH - Potencial Hidrogeniônico

pISFET – ISFET tipo P

pMOS – MOSFET tipo P

PMUB - Programa Multiusuário Brasileiro

pto_5 - MOSFET tipo P de óxido espesso da tecnologia SilTerra D18V

qRE - quasi reference electrode

REFET – Reference FET

RNA - Ácido ribonucleico

SD – Secure Digital

SMD - Surface mounted device

SNP - Single Nucleotide Polymorphisms

SNR - Signal-To-Noise Ratio

SPICE - Simulation Program with Integrated Circuits Emphasis

TSMC - Taiwan Semiconductor Manufacturing Company

UICM - Unified current-control model

USG - Undoped Silicate Glass

WHO – World Health Organization

LISTA DE SÍMBOLOS

- σ_o Densidade de cargas na interface eletrólito/isolante
- σ_d Densidade de cargas na camada difusa (*diffuse layer*)
- σ_s Densidade de cargas no semicondutor
- ε_0 Permissividade elétrica do vácuo
- C'eq Capacitância por unidade de área na interface eletrólito/isolante
- K₊ Constante de dissociação positiva
- K. Constante de dissociação negativa
- K_n Constante de dissociação para aminas
- Nsil Número de sites de silanol por área
- Nnit Número de sites de aminas primárias por área
- Ns Número total de binding sites
- H_s Concentração de prótons na superfície do isolante
- H_b Concentração de prótons na solução
- C'_H Capacitância da camada de Helmholtz por unidade de área
- ε_r Permissividade relativa do meio
- x2 Distância do OHP ao eletrodo
- $Ø_2$ Potencial no OHP
- ni Concentração de íons
- n^0 Concentração no *bulk* da solução
- zi Valência do izésimo íon
- $Ø_t$ Tensão térmica
- k Constante de Boltzmann
- T Temperatura absoluta
- q Carga do elétron
- ρ Densidade volumétrica de carga
- C*- Concentração do eletrólito
- Na Constante de Avogrado
- C'_G Capacitância diferencial da camada difusa por unidade de área
- κ Debye parameter
- C_d Capacitância diferencial
- *i*_f Nível de inversão direto
- *i*_r Nível de inversão reverso
- Vs-Tensão no terminal de fonte (source)
- V_D Tensão no terminal de dreno (drain)
- V_P Tensão de pinch off
- V_{GB} Tensão no terminal de porta (gate) em relação ao corpo (bulk)
- *n* Fator de rampa (*slope factor*)

 I_D – Corrente de dreno

 I_F – Componente direta da corrente de dreno

 I_R – Componente reversa da corrente de dreno

 I_S – Corrente de normalização

*I*_{SH} – Corrente de normalização de folha (*sheet*)

u_n - Mobilidade dos elétrons

C'ox - Capacitância do óxido por unidade de área

W – Largura do canal

L - Comprimento do canal

V_{ref} - Tensão aplicada no eletrodo

C_b - Capacitância de depleção

 ε_s – Permissividade elétrica do silício

 $Ø_s$ - Potencial de superfície do semicondutor

Cpass - Capacitância de passivação

Vtisf – Tensão de limiar (threshold) do ISFET

Vtmos - Tensão de limiar (threshold) do MOSFET

 $Ø_m$ - Função trabalho do metal de porta

 $Ø_{Si}$ - Função trabalho do silício

Cox - Capacitância do óxido

Qox - Carga acumulada no óxido

 Q_{ss} - Carga acumulada na interface óxido/silício

 Q_b - Carga acumulada no silício

E_{ref} - Potencial absoluto do eletrodo

 X_{sol} - Potencial devido a dipolos na interface do isolante

 $Ø_{lj}$ - Potencial de junção líquida entre a solução do eletrodo e a de teste

V_{tc} - Offset da tensão de limiar devido a cargas na porta flutuante

V_{chem} - Tensão devido a fatores químicos

 β_{int} - Capacidade intrínseca de buffer

 α – Parâmetro de sensibilidade dos ISFETs

tox - Espessura do óxido

A_{mos} - Área de porta

A_{pass} - Área do metal de topo

C_{SiN} – Capacitância da camada de Si₃N₄

 C_{USG} – Capacitância da camada de USG

 V_{DS} – Tensão entre terminais dreno e fonte

 V_{GS} – Tensão entre terminais porta e fonte

 g_m – Transcondutância de porta do transistor

SUMÁRIO

1	1 INTRODUÇÃO				
	1.1 OB.	IETIVOS	24		
	1.1.1	Objetivo geral	24		
	1.1.2	Objetivos específicos	25		
	1.2 EST	RUTURA DO TRABALHO	25		
2	FUND	AMENTOS SOBRE ISFET	27		
	2.1 RE\	/ISÃO DA LITERATURA	27		
	2.1.1	Principais aplicações de ISFETs	28		
	2.2 PRI	NCIPAIS NÃO-IDEALIDADES	30		
	2.2.1	Cargas armazenadas	31		
	2.2.2	Variação temporal da tensão de limiar	32		
	2.2.3	Atenuação Capacitiva	33		
	2.2.4	Efeitos da temperatura	33		
	2.2.5	Ruído	34		
	2.3 ELE	TRODO DE REFERENCIA	34		
	2.3.1	Eletrodo de Ag/AgCl	34		
	2.3.2	Pseudoeletrodos	35		
3	Ο ΜΑ	CRO MODELO DO ISFET	37		
	3.1 TEC	RIA DO SITE BINDING E DE GOUY-CHAPMAN-STERN	37		
	3.1 TEC 3.2 PEF	ORIA DO <i>SITE BINDING</i> E DE GOUY-CHAPMAN-STERN . RFIL DE POTENCIAL	37 39		
	3.1 TEC3.2 PEF3.3 COI	DRIA DO <i>SITE BINDING</i> E DE GOUY-CHAPMAN-STERN . RFIL DE POTENCIAL MPORTAMENTO DOS ISFETS COM O PH	37 39 41		
	3.1 TEC 3.2 PEF 3.3 COI 3.3.1	DRIA DO <i>SITE BINDING</i> E DE GOUY-CHAPMAN-STERN RFIL DE POTENCIAL MPORTAMENTO DOS ISFETS COM O PH <i>Relação tensão-corrente (modelo ACM)</i>	37 39 41 <i> 41</i>		
	3.1 TEC 3.2 PEF 3.3 COI 3.3.1 3.3.2	DRIA DO <i>SITE BINDING</i> E DE GOUY-CHAPMAN-STERN RFIL DE POTENCIAL MPORTAMENTO DOS ISFETS COM O PH <i>Relação tensão-corrente (modelo ACM) A relação da tensão de limiar com pH</i>	37 39 41 41 42		
	3.1 TEC 3.2 PEF 3.3 COI 3.3.1 3.3.2 3.3.3	DRIA DO <i>SITE BINDING</i> E DE GOUY-CHAPMAN-STERN RFIL DE POTENCIAL MPORTAMENTO DOS ISFETs COM O PH Relação tensão-corrente (modelo ACM) A relação da tensão de limiar com pH ISFETs e a sensibilidade ao pH	37 39 41 41 42 44		
	3.1 TEC 3.2 PEF 3.3 COI 3.3.1 3.3.2 3.3.3 3.4 SÍN	DRIA DO <i>SITE BINDING</i> E DE GOUY-CHAPMAN-STERN RFIL DE POTENCIAL MPORTAMENTO DOS ISFETs COM O PH Relação tensão-corrente (modelo ACM) A relação da tensão de limiar com pH ISFETs e a sensibilidade ao pH TESE DAS EQUAÇÕES DO MACRO MODELO	37 39 41 41 42 44 45		
4	3.1 TEC 3.2 PEF 3.3 COU 3.3.1 3.3.2 3.3.3 3.4 SÍN ENCA	DRIA DO <i>SITE BINDING</i> E DE GOUY-CHAPMAN-STERN RFIL DE POTENCIAL MPORTAMENTO DOS ISFETS COM O PH <i>Relação tensão-corrente (modelo ACM) A relação da tensão de limiar com pH ISFETs e a sensibilidade ao pH TESE DAS EQUAÇÕES DO MACRO MODELO PSULAMENTO</i>	37 39 41 41 42 42 45 47		
4	3.1 TEC 3.2 PEF 3.3 COI 3.3.1 3.3.2 3.3.3 3.4 SÍN ENCA	DRIA DO <i>SITE BINDING</i> E DE GOUY-CHAPMAN-STERN RFIL DE POTENCIAL MPORTAMENTO DOS ISFETS COM O PH <i>Relação tensão-corrente (modelo ACM) A relação da tensão de limiar com pH ISFETs e a sensibilidade ao pH TESE DAS EQUAÇÕES DO MACRO MODELO PSULAMENTO</i>	37 39 41 42 42 44 45 47 53		
4	 3.1 TEC 3.2 PEF 3.3 COI 3.3.1 3.3.2 3.3.3 3.4 SÍN ENCAI CIRCU 5.1 CIR 	DRIA DO <i>SITE BINDING</i> E DE GOUY-CHAPMAN-STERN RFIL DE POTENCIAL MPORTAMENTO DOS ISFETS COM O PH <i>Relação tensão-corrente (modelo ACM) A relação da tensão de limiar com pH ISFETs e a sensibilidade ao pH ISFETS e a sensibilidade ao pH ISFETS e a sensibilidade ao pH ISFETS E DAS EQUAÇÕES DO MACRO MODELO PSULAMENTO ITOS DE LEITURA DOS ISFETS CUITOS PARA MEDIDAS NÃO-DIFERENCIAIS</i>	37 39 41 42 42 45 45 53		
4	 3.1 TEC 3.2 PEF 3.3 COI 3.3.1 3.3.2 3.3.3 3.4 SÍN ENCAI CIRCU 5.1 CIR 5.2 CIR 	DRIA DO <i>SITE BINDING</i> E DE GOUY-CHAPMAN-STERN RFIL DE POTENCIAL MPORTAMENTO DOS ISFETS COM O PH <i>Relação tensão-corrente (modelo ACM) A relação da tensão de limiar com pH ISFETs e a sensibilidade ao pH ISFETS e a sensibilidade ao pH ISFETS E QUAÇÕES DO MACRO MODELO PSULAMENTO ITOS DE LEITURA DOS ISFETS CUITOS PARA MEDIDAS NÃO-DIFERENCIAIS CUITOS PARA MEDIDAS DIFERENCIAIS</i>	37 39 41 42 44 45 47 53 53		
4 5	 3.1 TEC 3.2 PEF 3.3 COI 3.3.1 3.3.2 3.3.3 3.4 SÍN ENCAI CIRCU 5.1 CIR 5.2 CIR PROJE 	DRIA DO <i>SITE BINDING</i> E DE GOUY-CHAPMAN-STERN RFIL DE POTENCIAL	37 39 41 42 44 45 47 53 53 54 57		
4 5	 3.1 TEC 3.2 PEF 3.3 COI 3.3.1 3.3.2 3.3.3 3.4 SÍN ENCAI CIRCU 5.1 CIR 5.2 CIR PROJE 6.1 TEC 	DRIA DO <i>SITE BINDING</i> E DE GOUY-CHAPMAN-STERN RFIL DE POTENCIAL	37 39 41 42 44 45 47 53 54 54 57		
4 5	3.1 TEC 3.2 PEF 3.3 COI 3.3.1 3.3.2 3.3.3 3.4 SÍN ENCAI CIRCU 5.1 CIR 5.2 CIR PROJE 6.1 TEC 6.2 CHI	DRIA DO <i>SITE BINDING</i> E DE GOUY-CHAPMAN-STERN RFIL DE POTENCIAL	37 39 41 42 44 45 53 54 57 57 57		
4 5	3.1 TEC 3.2 PEF 3.3 COI 3.3.1 3.3.2 3.3.3 3.4 SÍN ENCAI CIRCU 5.1 CIR 5.2 CIR PROJE 6.1 TEC 6.2 CHI	DRIA DO <i>SITE BINDING</i> E DE GOUY-CHAPMAN-STERN RFIL DE POTENCIAL	37 39 41 42 44 45 53 53 54 57 58		

		6.2.2	Projeto das Matrizes	60
	7	RESULT	rados obtidos por simulação	63
	8	CONCL	USÃO	69
	REFE	RÊNCIAS	S	71
STERN	APÊN 	NDICE A	– TEORIAS DE SITE-BINDING E DE GOUY-CHAPMAN	- 77
	APÊN	NDICE B -	- PREÇOS E CARACTERÍSTICAS DE TECNOLOGIAS H	/ 83
	APÊN	NDICE C -	– DETALHES DO <i>CHIP</i> PROJETADO	87
	APÊN	NDICE D	- ALGORITMO MATLAB DO MACRO MODELO	89

1 INTRODUÇÃO

De acordo com a World Health Organization, cerca de 8.8 milhões de mortes foram causadas por câncer e 1.6 milhões por diabetes em 2015 [1] e estima-se 390 milhões de infecções de dengue por ano no mundo [2]. Assim, detectar presença de vírus, bactérias, estágios iniciais de câncer, analisar fluidos químicos e os de pacientes (como sangue e saliva), e possibilitar o sequenciamento de DNA é de grande importância para a humanidade. Para isso, é necessário 0 desenvolvimento de técnicas e sensores adequados. Sensores químicos tecnologia CMOS se beneficiam implementados em dos aprimoramentos da indústria dos semicondutores, como redução das dimensões (permitindo maior densidade de sensores por área e análise de pequenos volumes reduzindo gastos com reagentes), menos consumo (possibilitando aplicações portáteis), e redução de preços com o passar dos anos, o que possibilita inclusive a integração completa de sistemas em um único chip (conhecidos por Lab-on-Chip). Um sensor que possui todas as vantagens abordadas anteriormente e que vem sendo aplicado em diversas áreas, além das já citadas, é o ISFET (Ion Sensitive Field Effect Transistor), que permite detecção de pH e pode ser concebido na tecnologia CMOS padrão.

ISFETs são transistores de efeito de campo cujo terminal de porta é um eletrodo de referência que polariza uma solução em contato com o óxido. Sua tensão de limiar varia de acordo com a concentração iônica da solução.

O conceito de ISFET surgiu na década de 70 [3], mas somente em 1999 foi descrito um procedimento para implementá-lo utilizando a tecnologia CMOS padrão [4]. Atualmente, vêm sendo aplicados em diversas áreas tais como: sequenciamento de DNA [5]; mapeamento iônico [6]; detecção de bactérias [7]; detecção de vírus [8]; etc.

Porém, certas não-idealidades deste dispositivo ainda necessitam de melhor análise e técnicas de redução. Assim, devido à importância crescente dos ISFETs, nota-se a necessidade em se desenvolver um estudo mais detalhado acerca de suas características, modelo matemático, formas de implementação e circuitos de leitura de concentração.

Portanto, neste trabalho serão apresentados princípios básicos dos ISFETs, algumas não-idealidades associadas aos mesmos e suas principais aplicações. O modelo matemático, utilizando as teorias de *binding sites*, modelo de Gouy-Chapman-Stern e o modelo do MOSFET válido em todas as regiões de operação do transistor, denominado ACM,

será detalhado e simulações serão realizadas através de algoritmo implementado no *software* Matlab[®]. Além disso, será descrito o projeto de um *chip*, feito no *software* Virtuoso[®], contendo matrizes de ISFETs (uma tipo P e outra N) e transistores MOSFET (um tipo P e outro N), enviado para fabricação na tecnologia de alta tensão SilTerra 180nm D18V, disponibilizada pelas empresas Chipus Microeletrônica S.A. e SilTerra Malaysia Sdn Bhd.

Com este *chip* será possível caracterizar os dispositivos na tecnologia utilizada. Isso facilitará a futura implementação destes ISFETs em um *Lab-on-Chip* visando à detecção de vírus (como dengue e zika) através da amplificação do RNA patógeno. Esta amplificação, que gera uma variação de pH na solução, pode ser realizada utilizando os métodos: PCR (*Polymerase chain reaction*) que exige diferentes ciclos de temperatura, sendo mais complexo, lento e custoso; ou LAMP (*Loop-mediated isothermal amplification*), que utiliza somente um ciclo de temperatura, sendo mais barato, rápido, sensitivo e robusto [9]. Métodos tradicionais para analisar os produtos desta amplificação incluem inspeções visuais, que exigem grandes quantidades de reagentes e treinamento específico, sendo mais suscetíveis a erros. Assim, a utilização de uma plataforma eletrônica tendo o ISFET como elemento sensor reduz a quantidade de reagentes, torna o teste mais rápido e produz um resultado menos suscetível a erros de leitura.

1.1 OBJETIVOS

Os objetivos gerais e específicos são detalhados a seguir.

1.1.1 Objetivo geral

Neste trabalho objetiva-se aprofundar o estudo dos ISFETs de forma que este documento auxilie na compreensão dos principais conceitos, dos *trade offs* de projeto e da modelagem matemática desses dispositivos.

Além disso, pretende-se desenvolver um *chip* para caracterização elétrica dos ISFETs e de fenômenos que carecem de modelos preditivos (como o *mismatch* da tensão de limiar devido a cargas armazenadas na porta flutuante do dispositivo) na tecnologia SilTerra D18V, de forma a facilitar a implementação desses dispositivos em um sistema mais completo.

1.1.2 Objetivos específicos

Este trabalho tem como propósitos:

- Implementação do modelo matemático dos ISFETs no software Matlab $^{\circledast}$.

- Desenvolvimento de um *chip* para caracterização elétrica de ISFETs na tecnologia SilTerra D18V, utilizando o *software* Virtuoso[®].

1.2 ESTRUTURA DO TRABALHO

Este trabalho está organizado de modo que no capítulo 2 é feita uma revisão da literatura sobre ISFETs, abordando temas como histórico, não-idealidades, principais aplicações e eletrodo de referência.

O capítulo 3 trata do modelo matemático que descreve o comportamento dos ISFETs.

No capítulo 4 são apresentados exemplos de encapsulamentos.

O capítulo 5 apresenta circuitos de leitura utilizados em ISFETs.

O capítulo 6 relata os detalhes do projeto do *chip* enviado para fabricação.

Resultados da simulação implementando o modelo teórico dos ISFETs e parâmetros do *chip* projetado são mostrados no capítulo 7.

Finalmente, o capítulo 8 situa as conclusões e propostas futuras de pesquisa.

2 FUNDAMENTOS SOBRE ISFET

2.1 REVISÃO DA LITERATURA

ISFET (*Ion Sensitive Field Effect Transistor*) é um transistor de efeito de campo cujo terminal de porta é um eletrodo de referência, polarizando uma solução aquosa que está em contato com o óxido através de uma membrana sensitiva, como ilustrado na Figura 1b. Sua operação como sensor químico decorre da variação da tensão de limiar de acordo com a concentração iônica da solução em que o eletrodo está submerso [10].

Fonte: [11].

O conceito de ISFETs surgiu com Bergveld na década de 70 [3]. Como ilustrado na Figura 2a, nos primeiros anos de pesquisa eram realizadas etapas pós-fabricação para tornar os transistores MOSFETs sensíveis ao pH, como depositar uma membrana de Ta_2O_5 sobre a região de porta dos transistores [10].

Em 1999, Bausells [4] demonstrou a possibilidade de fabricar ISFETs na tecnologia CMOS padrão, utilizando como membrana sensitiva a própria camada de passivação de Si_3N_4 o que elimina a necessidade de pós-processamento e, consequentemente, diminui os custos de fabricação. Este procedimento, denominado *extended gate*, está representado na Figura 2b, e consiste em estender a porta ao metal de topo do processo que está em contato com a camada de passivação.

Figura 2 - Fabricação de ISFETs (a) com pós-processamento; (b) na

Fonte: [12].

Bergveld [11] comparou a sensibilidade de diversas camadas sensitivas como SiO₂, Si₃N₄, Al₂O₃ e Ta₂O₅. Entre essas, a de Ta₂O₅ é a maior sensibilidade. Porém. ressaltado aue apresenta como anteriormente, a utilização da camada de passivação Si₃N₄ tem o benefício de não ser necessário realizar procedimentos pós-fabricação.

2.1.1 Principais aplicações de ISFETs

Nos últimos anos os ISFETs tiveram um crescimento expressivo no número de aplicações. A seguir serão relatadas algumas dessas aplicações e citados exemplos de publicações de cada caso.

A aplicação mais popular, segundo Moser et al. [10], é no sequenciamento de DNA. Devido a sua escalabilidade, ISFETs têm sido produzidos em densas matrizes compostas por milhares de sensores. As primeiras matrizes de sensores surgiram por volta de 2000, nas quais certas células apresentavam maior sensibilidade para uma sequência particular do genoma. Nesse contexto houve um aumento na pesquisa sobre ISFETs no projeto Genoma Humano, que objetivava diminuir o custo do sequenciamento para US\$1000. Esse resultado foi obtido, como se nota no gráfico da Figura 3 em que o valor elevado de alguns anos atrás deve-se ao custo das técnicas utilizadas anteriormente como, por exemplo, as óticas. Nessa aplicação, algumas publicações focam no sequenciamento de todo o DNA [5], [13], enquanto outras buscam amplificar genes específicos ou detectar Single Nucleotide Polymorphisms (SNPs) [14], [15].

Outra aplicação está no ramo de mapeamento iônico (*ion imaging*), que consiste em mapear espacial e temporalmente a concentração iônica de uma determinada solução sobre a matriz de ISFETs, como ilustrado na Figura 4. A principal diferença desses sistemas para os de sequenciamento de DNA é que em mapeamento iônico exige-se uma taxa de atualização de imagens mais elevada da matriz devido à natureza das reações [17], [6], [18], [19], [17], [20].

Figura 3 - Custo do sequenciamento por genoma.

Fonte: [18].

Além das citadas anteriormente, há diversas outras aplicações. Por exemplo, identificar estágios iniciais de câncer através da detecção de biomarcadores de metilação de DNA [21]. Outro exemplo é o diagnóstico de doenças infecciosas através da amplificação do RNA patógeno [8], no qual ISFETs foram utilizados em um *Lab-on-Chip* para detectar o vírus Zika em uma determinada solução, utilizando LAMP. ISFETs também foram utilizados para caracterizar a cinética enzimática de um ensaio utilizando hexoquinase/glicose, no qual foi possível obter a constante de Michaelis–Menten provando a precisão do sistema desenvolvido, que segundo o autor, teria aplicação na detecção de Diabetes Mellitus [22]. Detecção de bactérias também é possível e um trabalho já demonstrou a identificação da bactéria *Lactobacillus Acidophilus* em uma solução aquosa de glicose, em minutos, utilizando ISFETs [7]. Sua aplicação se estende inclusive à análise de alimentos, onde possibilita substituir os frágeis eletrodos de vidro [11].

Pequenas dimensões e baixo consumo também permitem aos ISFETs aplicações portáteis como em aparelhos de saúde e de condicionamento físico, permitindo monitorar pacientes fora do hospital e atletas durante o treinamento. Por exemplo, já foi proposto o uso dos sensores para analisar a transpiração humana em tempo real, em um sistema a ser alimentado por um gerador termoelétrico que utilizaria o próprio calor do corpo humano [23].

Além disso, estudos demonstram a possibilidade de tornar ISFETs sensíveis a outros íons além dos de hidrogênio. Foram depositadas membranas sensitivas sobre uma matriz de ISFETs, gerando regiões sensíveis a íons de potássio, sódio e hidrogênio, o que permitiria aplicação em análise de certas lesões no cérebro [17].

2.2 PRINCIPAIS NÃO-IDEALIDADES

ISFETs apresentam certas não-idealidades que passaram a ter maiores consequências nos últimos anos, principalmente com o uso de matrizes de sensores na tecnologia CMOS padrão. Como ilustrado na Figura 5, há efeitos das cargas armazenas na porta e na passivação (*trapped charge*), atenuação capacitiva, deriva (*drift*) temporal da tensão de limiar, efeitos da temperatura, além do ruído químico e elétrico. Os itens a seguir tratarão de cada não-idealidade.

2.2.1 Cargas armazenadas

Em transistores com porta flutuante (*floating gate*), cargas ficam armazenadas pelo processo de fabricação, o que gera um *offset* na tensão de limiar como ilustrado na Figura 5a. Este *offset* é diferente para cada dispositivo fabricado, o que causa um *mismatch* entre ISFETs, originando efeito semelhante ao *fixed-pattern noise* - FPN de sensores de imagem CMOS (crítico em matrizes) [10]. Por exemplo, há relatos de variações de -4 V a -1 V para ISFETs fabricados em tecnologia AMS 0.35 µm [24].

Para amenizar esse efeito, pode-se utilizar exposição ultravioleta [24], que permite remover as cargas armazenadas na camada de passivação e na porta flutuante do transistor. O método de *hot electron-injection* também já foi utilizado para diminuir a tensão de limiar de um pISFET aplicando-se tensões elevadas entre fonte e dreno durante o tempo de um minuto [25]. Outra técnica utilizada para adicionar ou

remover cargas da porta flutuante através de uma tensão elevada acoplada à porta do ISFET por um capacitor foi a técnica de tunelamento de elétrons (usada em memórias não-voláteis), obtendo-se uma redução da tensão de limiar de um pISFET utilizado no experimento [26].

Outras abordagens implementam arquiteturas, como quando se utilizou a técnica denominada *Programable Gate*, em que uma tensão de controle é aplicada a um terminal acoplado à porta flutuante do ISFET através de um capacitor [27]. Um esquema de *reset* utilizando uma chave com pouca fuga [28], seguido da técnica de *correlated double sampling* (CDS) já foi implementado [19]. Ademais, CDS também é utilizado para reduzir o *mismatch* da tensão de limiar entre os ISFETs por Xiwei *et al.* [13]. A compensação do efeito das cargas armazenadas ainda pode ser feita através da modulação da tensão de fonte do ISFET [29].

Além disso, a tensão de limiar do ISFET também é influenciada pela geometria do dispositivo. A comparação entre estruturas lineares e interdigitadas, demonstrou uma variação de -7 V a 6 V da tensão de limiar em uma tecnologia de 1 μ m da Atmel-ES2 [4].

2.2.2 Variação temporal da tensão de limiar

Como ilustrado na Figura 5b, em ISFETs observa-se que a tensão de limiar sofre uma variação temporal lenta, da ordem de 1.5 a 8.5 mV/h [28], o que pode influenciar medições que necessitam de mais tempo. Essa variação se deve a um fenômeno de transporte na interface entre isolante e solução e é modelada como uma variação exponencial, com o tempo sofrendo influência de diversos fatores, tais como: pH, material da camada sensitiva e dimensões do dispositivo [10]. Além disso, há um aumento dessa variação temporal devido a influências do eletrodo de referência, como fuga na corrente de polarização do eletrodo [30].

Alternativas para diminuir a influência dessa não-idealidade incluem arquiteturas que implementam medições diferenciais. Essas medidas podem ser realizadas entre ISFETs com diferentes sensibilidades, entre um ISFET e um FET insensível ao pH (chamado REFET), entre ISFETs medindo soluções com diferentes concentrações iônicas (utilizando-se como referência ISFETs em uma solução de controle, por exemplo) ou, ainda, entre um par ISFET/MOSFET.

Por exemplo, pode-se utilizar uma célula química de Gilbert para realizar medida diferencial entre câmaras (compartimento sobre o ISFET em que se injeta a solução para análise), obtendo-se uma redução de 100 vezes na deriva temporal, se comparado a uma medida não diferencial [21]. Toumazou *et al.* [15] utilizou uma das três câmaras implementadas como referência a fim de se realizar medidas diferenciais. Garner *et al.* [14], configura um dos ISFETs da matriz, composta por 40 sensores, como REFET para medições diferenciais.

Uma outra forma de reduzir os efeitos da deriva temporal é aplicar um processamento de dados via *software*. Por exemplo, Hammond *et al.* [31] implementou um modelo matemático, permitindo uma redução significativa da influência da deriva nos resultados lidos em uma medida de 20 minutos.

2.2.3 Atenuação Capacitiva

Ao se utilizar tecnologia CMOS padrão para fabricar ISFETs, é introduzido um divisor capacitivo formado pelas camadas de passivação e de SiO₂, o que gera uma atenuação do sinal aplicado ao eletrodo, como ilustrado na Figura 5a. Este fenômeno pode ser reduzido substituindo-se a camada de passivação de Si₃N₄ por outro elemento sensível ao pH, o que exige etapas pós-fabricação [10]. Isso pode ser realizado, por exemplo, expondo o metal de topo dos ISFETs e permitindo a formação natural de uma fina camada de Al₂O₃ com aproximadamente 5 nm de espessura [32].

Também é possível diminuir esta atenuação através de uma arquitetura que implementa um laço de realimentação capacitivo [19], [28].

2.2.4 Efeitos da temperatura

Como em outros dispositivos eletrônicos, ISFETs sofrem influência da temperatura na concentração e no fluxo de elétrons. Porém tem-se a adição de outros elementos: a solução química, o eletrodo e a camada sensitiva. O efeito da temperatura em ISFETs é, em alguns casos, comparável à variação de 1 pH para cada 7 K em torno da temperatura ambiente, como ilustrado na Figura 5c [10].

O ponto de insensibilidade à temperatura da curva Id/Vgs encontrado em MOSFETs não existe em ISFETs, devido aos efeitos do potencial de superfície e do eletrodo de referência [11]. Nesse caso, formas de reduzir os efeitos de temperatura em ISFETs incluem medidas diferenciais, utilização de reguladores de temperatura *on-chip*, entre outras [10].

2.2.5 Ruído

O ruído limita a resolução do sensor. Além do ruído já conhecido em MOSFETs, tem-se o ruído químico da solução. O ruído químico pode prevalecer sobre o do MOSFET, dependendo da tecnologia utilizada [10].

Formas de reduzir o ruído incluem medidas diferenciais, como no caso da temperatura. Também se pode utilizar a média da medida de diversos sensores de uma matriz [23], [22]. É possível provar, através do Teorema do Limite Central, que, ao se fazer a média de *N* sensores, o ruído é reduzido por \sqrt{N} [23].

2.3 ELETRODO DE REFERÊNCIA

A solução em contato com o ISFET é polarizada através do eletrodo de referência. Portanto, esse elemento exerce um papel importante no desempenho do sensor, influenciando, por exemplo, a linearidade, a sensibilidade e o ruído [33].

Em um eletrodo ideal, a tensão na interface eletrodo/solução não varia com a composição da solução, devido ao equilíbrio eletroquímico mantido com a solução [34]. Outras idealidades incluem reprodutibilidade, reversibilidade termodinâmica e química, baixo coeficiente de temperatura, baixa histerese, fácil preparação e manuseio, e potenciais de junção baixos e reprodutíveis [35]. Eletrodos como os de calomelano e de prata/cloreto de prata são frequentemente utilizados [36]. A seguir serão apresentados mais detalhes desse último.

2.3.1 Eletrodo de Ag/AgCl

Como já citado, um eletrodo comumente utilizado em ISFETs é o de prata/cloreto de prata (Ag/AgCl), ilustrado na Figura 6. Esse componente é constituído de um fio de prata (Ag) coberto por cloreto de prata (AgCl) imerso em uma solução rica de íons Cl⁻ (como KCl saturado) separada da solução de teste por uma membrana porosa.

Seu potencial em relação ao do eletrodo padrão de hidrogênio (EPH) é de 0.19 V [33]. Em eletroquímica, os potenciais de redução de semi-reações são referenciados ao EPH [37], cujo potencial absoluto, estimado em diferentes experimentos, está entre 4.2 V e 4.8 V [38] sendo indicado pela *International Union of Pure and Applied Chemistry* o valor de (4.44 ± 0.02) V a 25°C [39].

Apesar de serem estáveis, o formato e dimensões destes eletrodos dificulta a implementação em pequenos volumes. Neste caso, pode-se fabricar versões miniaturizadas, que apresentam grande complexidade, menos estabilidade e curto tempo de vida como detalhado em [33]. Outra alternativa são os pseudoeletrodos.

2.3.2 Pseudoeletrodos

Pseudoeletrodos podem ser constituídos apenas por fios ou contatos de platina, ouro, prata dentre outros elementos, em contato direto com a solução teste, tornando-os mais simples de implementar em circuitos integrados [35]. Porém, diferentemente do eletrodo padrão, em um pseudoeletrodo (*quasi reference electrode* – qRE) o potencial de contato apresenta variações de acordo com a composição da solução.

Este efeito pode ser anulado com medição diferencial. Por exemplo, Hammond *et al.* [34], produziu um pseudoeletrodo através de um *pad* de alumínio projetado para ser coberto por algum metal estável como ouro. Utilizando medidas diferenciais entre ISFET e REFET polarizados pelo mesmo pseudoeletrodo, as variações da tensão são tratadas como um sinal de modo comum, não interferindo nas medições. Um contato de platina *on-chip* também já foi usado como pseudoeletrodo [41].
3 O MACRO MODELO DO ISFET

Em ISFETs, a tensão de limiar sofre influência da concentração iônica da solução. Esta sensibilidade ao pH da solução, é modelada utilizando a teoria de *site-binding* e o modelo de dupla camada de Gouy-Chapman-Stern [42]. Na teoria de *site-binding*, a camada isolante é carregada quando ocorre o equilíbrio entre a interface do isolante e os íons de hidrogênio da solução [43]. Já o modelo de dupla camada de Gouy-Chapman-Stern modela a interface sólido/líquida considerando uma separação de cargas, com cargas sendo armazenadas em uma compacta camada próxima à superfície (camada Helmholtz) e cargas difusas seguindo a distribuição de Boltzmann (camada Gouy-Chapman) [43], [44]. Nesta seção serão abordados os modelos citados.

A condição de neutralidade de cargas é expressa pela equação (1) [45]:

$$\sigma_o + \sigma_d + \sigma_s = 0 \tag{1}$$

sendo σ_o a densidade de cargas na interface eletrólito/isolante, σ_d na camada difusa (*diffuse layer*) e σ_s no semicondutor. Considerando σ_s invariante com o pH e muito menor que σ_o e σ_d , a equação (1) se torna (2):

$$\sigma_o + \sigma_d = 0 \tag{2}$$

E assim é possível separar o estágio eletroquímico do eletrônico [45]. Essa relação pode ser reescrita como:

$$\sigma_d = -\sigma_o = -C'_{eq} \emptyset_{eo} \tag{3}$$

sendo \emptyset_{eo} o potencial na interface eletrólito/isolante e C'_{eq} a capacitância por unidade de área nesta interface.

3.1 TEORIA DO SITE BINDING E DE GOUY-CHAPMAN-STERN

A densidade de carga na interface eletrólito/isolante (σ_o) pode ser determinada através da teoria de *site-binding* que descreve o equilíbrio entre os sítios de SiOH (silanol) no isolante e íons de H⁺ na solução [46]. Segundo essa teoria, para a camada de Si₃N₄, σ_o é dado por (4) [47].

$$\sigma_o = \left(\frac{H_s^2 - K_- K_+}{H_s^2 + K_+ H_s + K_+ K_-}\right) qNsil + \left(\frac{H_s}{H_s + K_n}\right) qNnit$$
(4)

onde q é a carga do elétron (1.6*10⁻¹⁹ C), *Nsil* o número de sítios de silanol por área, *Nnit* o número de sítios de aminas primárias (SiNH₂) por área, K_+ , K_- e K_n as constantes de dissociação. A concentração de prótons na superfície do isolante (H_s) é relacionada à concentração de prótons na solução (H_b) através da equação de Boltzmann [47]:

$$H_s = H_b \exp\left(-\frac{\phi_{eo}}{\phi_t}\right) \tag{5}$$

com \emptyset_t correspondendo à tensão térmica (=kT/q) em que k é a constante de Boltzmann (1.38*10⁻²³ J/K) e T a temperatura absoluta. O pH da solução é definido por $-\log_{10}(H_b)$. Para a camada de Si₃N₄, atribui-se os seguintes valores às constantes [47]: $K_+=15.8$ mol/L, $K_-=63.1*10^{-9}$ mol/L, $K_n=10^{-10}$ mol/L, $Nsil=3*10^{18}$ m⁻² e $Nnit=2*10^{18}$ m⁻².

Já a densidade de carga σ_d e a capacitância C'_{eq} podem ser obtidas através da teoria de dupla camada de Gouy-Chapman-Stern. Este modelo considera uma separação de cargas, com cargas sendo armazenadas em uma compacta camada próxima à superfície (camada Helmholtz) cujo potencial varia de maneira linear e se estende até o *Outer Helmholtz Plane* (OHP), e cargas difusas seguindo a distribuição de Boltzmann (camada Gouy-Chapman), como ilustra a Figura 7 [43], [44].

Figura 7 - Perfil de cargas e de potencial no modelo de Gouy-Chapman-

Fonte: [44]

Para as expressões a seguir, considerou-se o caso de um eletrólito simétrico (também conhecido por eletrólito z:z) [36], [48]. Eletrólitos z:z apresentam uma espécie de cátion e uma de ânion com carga z, sendo $|z^+|=|z_-|=z$ [36]. Por exemplo, NaCl é 1:1 pois se desassocia em Na⁺¹ e Cl⁻¹ quando dissolvido em água.

A densidade de carga σ_d é expressa por (6) [36]:

$$\sigma_d = -\sqrt{8kTn^0\varepsilon_r\varepsilon_0}\sinh\left(\frac{z\phi_2}{2\phi_t}\right) \tag{6}$$

na qual ε_0 é a permissividade elétrica do vácuo (8.85*10⁻¹² F/m), ε_r a permissividade relativa do meio e \emptyset_2 o potencial no OHP, definido em (8). Pode-se expressar n^0 (íons/unidade de volume) em termos da concentração do eletrólito C^* (mol/L) através da relação $n^0=NaC^*$, sendo Na a constante de Avogrado (6.02*10²³ mol⁻¹) e lembrando que 1 mol/L equivale a 10³ mol/m³.

A capacitância C'_{eq} é dada por (7) [36]:

$$\frac{1}{C'_{eq}} = \frac{x_2}{\varepsilon_r \varepsilon_0} + \frac{1}{\sqrt{\frac{2\varepsilon_r \varepsilon_0 z^2 q^2 n^0}{kT}} \cosh\left(\frac{zq\phi_2}{2kT}\right)} = \frac{1}{C'_H} + \frac{1}{C'_G}$$
(7)

Percebe-se que a capacitância C'_{eq} é composta pela associação em série de C'_H (capacitâncias das cargas contidas até o OHP, ou seja, na camada de Helmholtz) e C'_G (correspondendo à capacitância das cargas difusas descritas por Gouy-Chapman). Nesta expressão, x_2 é a distância do OHP ao eletrodo, cujo potencial é \emptyset_2 . Valores utilizados por Bard e Faulkner são [36]: ε_r =78.49 (permissividade relativa da água a 27 °C) e x_2 = 0.5 nm.

3.2 PERFIL DE POTENCIAL

O potencial em relação à distância do eletrodo decresce linearmente na camada de Helmholtz ($x \le x_2$), sendo o potencial \emptyset_2 , em $x=x_2$ (OHP), dado por (8) [36]:

$$\emptyset_2 = \emptyset_{eo} + \frac{\sigma_d}{C'_H} \tag{8}$$

Já na camada de Gouy-Champan ($x > x_2$), considerando ${}^{Z\emptyset}/{}_{2\emptyset_t} < 0.5$, o perfil de potencial é dado por (9) [36]:

$$\phi = \phi_2 e^{-\sqrt{\frac{2n^0 z^2 q}{\varepsilon_r \varepsilon_0 \phi_t} (x - x_2)}} = \phi_2 e^{-\kappa (x - x_2)}$$
(9)

sendo κ denominado *Debye parameter* (m⁻¹) e κ^{-1} , *Debye length* (em m).

Assim, pode-se traçar o perfil de potencial em relação à distância do eletrodo (Figura 8). No caso abaixo, foram considerados eletrólito 1:1 em água sob temperatura de 25 °C, ε_r =78.49, x_2 =0.5 nm, ϕ_{eo} =130 mV e concentração de 0.01 mol/L.

Fonte: Elaborada pelo autor.

Percebe-se o potencial decrescendo linearmente na camada de Helmholtz (para $x \le x_2$) e de maneira exponencial sob a camada de Gouy-Chapman (para $x > x_2$). Maiores detalhes das teorias abordadas nesta seção estão no APÊNDICE A – Teorias de site-binding e de Gouy-Chapman-Stern.

3.3 COMPORTAMENTO DOS ISFETS COM O pH

3.3.1 Relação tensão-corrente (modelo ACM)

Para descrever a operação dos ISFETs, as teorias de *site-binding* e de dupla camada de Gouy-Chapman-Stern abordadas anteriormente são combinadas com as equações que modelam transistores MOSFETs, a serem analisadas a seguir. Utilizando-se o modelo ACM, que é válido em todas as regiões de operação do transistor [49], tem-se a seguinte relação entre a tensão nos terminais do transistor e os níveis de inversão direto e reverso ($i_f e i_r$, respectivamente), denominada UICM - U*nified current-control model* (10):

$$V_P - V_{S(D)} = \phi_t \left(\sqrt{1 + i_{f(r)}} - 2 + \ln\left(\sqrt{1 + i_{f(r)}} - 1\right) \right)$$
(10)

sendo $Ø_t$ a tensão térmica, $V_S e V_D$ as tensões nos terminais de fonte (*source*) e dreno (*drain*) respectivamente, e V_P a tensão de *pinch off* aproximada por (11):

$$V_P \cong \frac{V_{GB} - V t_{mos}}{n} \tag{11}$$

com V_{GB} sendo a tensão de porta (*gate*) em relação ao corpo (*bulk*), Vt_{mos} a tensão de limiar do transistor e *n* o fator de rampa. A corrente de dreno do transistor (I_D) é relacionada aos níveis de inversão i_f e i_r pela seguinte fórmula:

$$I_D = I_F - I_R = I_S(i_f - i_r)$$
(12)

sendo I_F e I_R as componentes direta e reversa de I_D respectivamente, e I_S a corrente de normalização, dada por:

$$I_{S} = \mu_{n} C'_{ox} n \frac{\phi_{t}^{2} W}{2} = I_{SH} \frac{W}{L}$$
(13)

 I_{SH} é denominada corrente de normalização de folha, μ_n a mobilidade dos elétrons, C'_{ox} a capacitância do óxido por unidade de área, *L* o comprimento e *W* a largura do canal do transistor.

Nos ISFETs, devido ao divisor capacitivo da camada de passivação, a tensão aplicada à porta do transistor (V_{GB}) é atenuada em relação a tensão aplicada no eletrodo (V_{ref}) [50] de acordo com a expressão:

$$V_{GB} = V_{ref} \frac{C_{pass}}{C_{pass} + (C_{ox}, C_b)/(C_{ox} + C_b)}$$
(14)

sendo C_b a capacitância de depleção, cuja definição por unidade de área é dada por [49]:

$$C'_{b} = \frac{\sqrt{2q\varepsilon_{s}Na(1-e^{-us})}}{2\sqrt{\phi_{s}+\phi_{t}(e^{-us}-1)}}$$
(15)

com $us = \emptyset_s / \emptyset_t$, \emptyset_s é o potencial de superfície do semicondutor e ε_s a permissividade elétrica do silício ($\varepsilon_s = 12\varepsilon_0$). Como será visto no capítulo sobre o projeto, na tecnologia utilizada, a capacitância de passivação (C_{pass}) é formada pela associação série das capacitâncias das camadas de Si₃N₄ (C_{SiN}) e de Undoped Silicate Glass (C_{USG}), resultando em:

$$C_{pass} = \frac{C_{SiN}C_{USG}}{C_{SiN} + C_{USG}} \tag{16}$$

Em ISFETs, a tensão de limiar é o parâmetro que varia com o pH, como será descrito na próxima seção.

3.3.2 A relação da tensão de limiar com pH

A definição clássica de tensão de limiar do MOSFET (Vt_{mos}) é dada por [11]:

$$Vt_{mos} = \frac{\phi_m - \phi_{Si}}{q} - \frac{Q_{ox} + Q_{ss} + Q_B}{C_{ox}} + 2\phi_f$$
(17)

sendo o primeiro termo a diferença das funções trabalho, em volts, do metal de porta (\emptyset_m) e do silício (\emptyset_{Si}), \emptyset_f o potencial de Fermi, C_{ox} a capacitância do óxido, Q_{ox} a carga acumulada no óxido, Q_{ss} na interface óxido/silício e Q_b no silício. Considerando-se a estrutura do ISFET, é adicionada na expressão anterior a influência do potencial do eletrodo e da interface eletrólito/isolante [11]. Assim, a tensão de limiar nos ISFETs ($V_{t_{isf}}$) é dada por [51]:

$$Vt_{isf} = (E_{ref} + \phi_{lj}) - (\phi_{eo} - \chi_{sol}) - \frac{Q_{ox} + Q_{ss} + Q_B}{C_{ox}} + 2\phi_f - \frac{\phi_{Si}}{q}$$
(18)

onde E_{ref} é o potencial absoluto do eletrodo, X_{sol} é o potencial devido a dipolos na interface do isolante \emptyset_{lj} é o potencial de junção líquida (*liquid junction*) entre a solução do eletrodo e a de teste e \emptyset_{eo} o potencial na interface eletrólito/isolante. Considerando-se a Vt_{mos} mostrada anteriormente, Vt_{isf} pode ser rescrita como [51]:

$$Vt_{isf} = Vt_{mos} + \left(E_{ref} + \chi_{sol} + \phi_{lj} - \frac{\phi_m}{q} - \phi_{eo}\right)$$
(19)

onde \emptyset_{eo} é dependente do pH da solução, como visto na equação (5). Assim, a relação tensão-corrente nos terminais do ISFET de acordo com o pH fica completa ao se substituir Vt_{mos} por Vt_{isf} na equação (11).

Das equações (10) e (11), nota-se que um aumento da tensão de limiar é equivalente a uma redução de V_G (e vice-versa). Assim, de forma a facilitar a implementação do modelo em *softwares* de simulações de circuitos como SPICE, alguns autores emulam a variação de V_{tisf} em V_G conectando elementos que modelam potenciais e capacitâncias do macro modelo ao terminal de porta do transistor, como ilustrado na Figura 9 [45], [27].

Figura 9 - Circuito equivalente do macro modelo.

 V_{tc} representa o *offset* da tensão de limiar devido a cargas na porta flutuante do transistor e V_{chem} a tensão devido a fatores químicos.

3.3.3 ISFETs e a sensibilidade ao pH

Van Hal *et al.* [42] propôs a descrição da sensibilidade do potencial \emptyset_{eo} à concentração de prótons na solução (dada por $\partial \hat{\emptyset}_{eo}/\partial pH_b$) em função dos parâmetros β_{int} e C_d . A seguir, os cálculos serão brevemente apresentados e será discutida a sensibilidade ao pH máxima teórica dos ISFETs.

Considerando-se a derivada de σ_o em relação a *pHs*, tem-se:

$$\frac{\partial \sigma_o}{\partial pHs} = -q2.3H_s Nsil \frac{K_+ H_s^2 + 4K_+ K_- H_s + K_+^2 K_-}{(H_s^2 + K_+ H_s + K_+ K_-)^2} = -q\beta_{int}$$
(20)

sendo σ_o definido em (4), e β_{int} denominado capacidade intrínseca de *buffer*. Calculando-se a derivada de σ_d em relação a \emptyset_{eo} , obtém-se a capacitância diferencial C_d , que é equivalente à definida em (7):

$$\frac{\partial \sigma_d}{\partial \phi_{eo}} = -\frac{\partial \sigma_o}{\partial \phi_{eo}} = -C_d \tag{21}$$

Com as expressões anteriores, pode-se calcular a sensibilidade $Ø_{eo}$ em relação a *pHs*:

$$\frac{\partial \phi_{eo}}{\partial pHs} = \frac{\partial \phi_{eo}}{\partial \sigma_o} \frac{\partial \sigma_o}{\partial pHs} = \frac{-q\beta_{int}}{C_d}$$
(22)

Considerando-se a relação entre Hs e Hb dada em (5), obtém-se a seguinte sensibilidade de \emptyset_{eo} em relação à concentração de prótons na solução pHb:

$$\frac{\partial \phi_{eo}}{\partial pHb} = -2.3\phi_t \alpha \tag{23}$$

sendo a definido por:

$$\alpha = \frac{1}{\frac{2.3kTC_d}{q^2\beta_{int}} + 1}$$
(24)

 α é um termo adimensional entre 0 e 1 dependente de β_{int} e de C_d [42]. Portanto, a sensibilidade máxima teórica esperada em ISFETs é dada por 2.3 \emptyset_t , que representa 59 mV/pH a 25 °C (resposta nernstiana) [11].

Na prática, os valores obtidos estão abaixo de 59 mV/pH, devido a características dos elementos utilizados na camada em contato com a solução [11]. Por exemplo, Matsuo e Esahi [52] relataram sensibilidade entre 46 e 56 mV/pH para camada sensitiva fabricada com Si₃N₄. Na Tabela 1, estão as sensibilidades obtidas em publicações implementando diferentes sistemas com ISFETs em tecnologias CMOS padrão (com passivação formada por Si₃N₄), sem etapas pós-fabricação. Entre os sistemas tabelados estão presentes diferentes arquiteturas e alguns resultados são da média de diversos sensores de uma matriz.

Referência	Sensibilidade (mV/pH)	Tecnologia		
[18]	20	AMS 0.35 µm		
[19]	39.6	AMS 0.35 µm		
[53]	40	AMS 0.35 µm		
[28]	42.1	AMS 0.35 µm		
[34]	43	AMS 0.6 µm		
[21]	45	0.35 µm		
[6]	46	AMS 0.35 µm		
[24]	46	AMS 0.35 µm		
[4]	47	Atmel-ES2 1 µm		
[31]	48	AMS 0.6 µm		

Tabela 1 - Sensibilidade de ISFETs em tecnologias padrão.

Fonte: Elaborada pelo autor.

Devido a sua simplicidade, diversos autores descrevem a variação de Vt_{isf} com o pH através de $\Delta Vt_{isf} = 2.3 \alpha \partial t \Delta pH$ no lugar da relação descrita pela equação (19) [11], [43], [54], [10].

3.4 SÍNTESE DAS EQUAÇÕES DO MACRO MODELO

Com base nas equações e teorias abordadas anteriormente, a seguir será apresentado um resumo das equações do macro modelo. Os potenciais \emptyset_{eo} e \emptyset_2 podem ser determinados através do seguinte sistema de equações:

$$\begin{cases} \emptyset_{eo} = \frac{\sigma_o}{C'_{eq}} \\ \emptyset_2 = \emptyset_{eo} + \frac{\sigma_d}{\frac{\varepsilon_r \varepsilon_0}{x_2}} \end{cases}$$
(25)

sendo σ_o expresso por (4), C'_{eq} por (7) e σ_d definido em (6). Nota-se que σ_o é função de \emptyset_{eo} e *pH* enquanto que σ_d e C'_{eq} são funções de \emptyset_2 . Portanto, \emptyset_{eo} e \emptyset_2 foram numericamente determinados através de algoritmo implementado no *software* Matlab[®].

A relação de Vt_{isf} com \emptyset_{eo} é dada na expressão (19). Assim, podese determinar a corrente e tensões nos terminais do ISFET utilizando o UICM através da equação (10). Detalhes da implementação do macro modelo no Matlab[®] estão no APÊNDICE D – Algoritmo Matlab.

No equacionamento apresentado neste trabalho, considerou-se o potencial \mathscr{O}_2 . Porém para uma maior facilidade na aplicação em softwares de simulação de circuito como SPICE e linguagens como verilog-A, alguns autores consideram \mathscr{O}_2 desprezível, de forma que C'_G e, consequentemente, C'_{eq} não dependam de \mathscr{O}_2 , sendo \mathscr{O}_{eo} obtido somente pela equação (3) [45], [55].

Além disso, o pressuposto de que a densidade de carga no semicondutor (σ_s) é desprezível em relação às demais, aplicado na equação (2), é utilizado no macro modelo pois facilita a implementação em programas de simulação de circuito, como SPICE, uma vez que os (interface estágios eletrônico (MOSFET) e eletroquímico eletrólito/isolante) são separados [45]. Outra alternativa de modelagem são os modelos físico-químicos (built-in), que consideram a densidade de carga no semicondutor, gerando um modelo mais completo, porém mais complexo e que exige alterações no código fonte destes programas, como feito no SPICE versão 2G, originando o BIOSPICE [51]. A comparação entre estes dois modelos gerou resultados próximos [45]. Portanto, no presente trabalho, utilizou-se o macro modelo devido à maior facilidade de implementação e maior compatibilidade com softwares de simulação de circuito.

4 ENCAPSULAMENTO

O tipo de encapsulamento utilizado depende da aplicação do sistema. Diversos materiais com diferentes propriedades são empregados, sendo a biocompatibilidade uma característica importante em aplicações médicas [56]. Formatos citados na literatura incluem forma de cone, SMD (*surface mounted device*) utilizando epóxi para montagem em PCB (*printed circuit board*), DIL (*dual in line*) com encapsulamento de silicone, entre outros [56]. A seguir serão mostrados alguns exemplos utilizados em trabalhos recentes.

Por exemplo, o *chip* contendo a matriz de ISFETs já foi encapsulado em um PGA (*Pin Grid Array*). Como ilustrado na Figura 10, as conexões foram protegidas com epóxi e sobre o *chip* foi posta parte de um tubo de centrifugação, cujo modelo utilizado por Nemeth *et al.* é da marca Corning de 15 mL com 17.5 mm de diâmetro [22], [18].

Figura 10 - Encapsulamento utilizando PGA.

Fonte: [22].

Cardoso [57] utilizou ISFETs comercializados pelo Centro Nacional de Microeletrônica de Barcelona (CNM), os quais são implementados em uma estrutura tipo bastão feita de FR-4, sendo o conjunto coberto por epóxi e com uma abertura sobre a área sensível, como ilustrado na Figura 11. Para caracterização, o bastão é mergulhado em um recipiente com a solução de teste polarizada por um eletrodo. No trabalho citado são dados maiores detalhes da fabricação de estruturas semelhantes a esta. Figura 11 - (a) Bastão do CNM. (b) área sensível. (c) conexões.

Em outro sistema apresentado, o *chip* detalhado na Figura 12a foi conectado com *wire bonding* às trilhas da PCB esquematizada na Figura 12b [31]. O *chip* foi posicionado sob a PCB em uma cavidade de 4.5 mm x 4.75 mm x 580 µm realizada com uma fresadora. Os componentes foram revestidos com epóxi SU-8, com exceção da área sensível contendo ISFETs. Para a caracterização, o conjunto foi mergulhado em um recipiente contendo a solução polarizada por um eletrodo de Ag/AgCl.

Já o *chip* com ISFETs da Figura 13 foi manualmente conectado a uma PCB com 5 cm x 5 cm. Uma camada de epóxi SU-8 foi utilizada para encapsular a placa e o *chip* de forma a se obter biocompatibilidade e impermeabilidade, com uma área aberta sob a matriz, como mostra Figura 13a. Para análise das soluções e aplicação do eletrodo de referência, instalou-se um anel com o *chip* no centro, como mostra a Figura 13b [6].

Figura 13 – Detalhes do (a) *chip*. (b) encapsulamento.

O chip apresentado por Xu et al. [32] contém matrizes de ISFETs para caracterização em uma tecnologia 0.18 µm, e possui dimensões de 2.3 x 2.6 mm². Sob o *chip* foi fabricado um canal microfluídico com 1.5 mm de comprimento, 1 mm de largura e 60 µm de altura com tubulações de entrada e saída. Um fio de Ag/AgCl inserido no tubo de saída serve como pseudoeletrodo. O conjunto foi montado em uma placa de circuito impresso, com bonding wires conectando o chip à placa. Mais detalhes na Figura 14.

Para realizar medidas diferenciais entre soluções. duas microcâmaras foram implementas por Kalofonou e Toumazou [21], como mostra a Figura 15. Cada microcâmara possui dimensões de 1 mm x 0.4 mm x 0.4 mm. Um fio de Ag/AgCl passando em ambas câmaras funciona como pseudoeletrodo.

Fonte: [6].

Figura 15 – Microcâmaras para medida diferencial.

Fonte: [21].

A Figura 16a apresenta detalhes do chip encapsulado com a câmara mostrada na Figura 16b [17], [19]. Aplicou-se glob top para proteger os *pads* e *wire bonding* que conectam o *chip* à placa de circuito impresso conectada a um circuito de leitura e controle. A célula microfluídica é montada sob o chip, com entrada e saída para o fluido, e com um pseudoeletrodo de Ag/AgCl no centro da câmara.

O lab-on-chip contendo ISFETs apresentado em Toumazou et al. [15] foi encapsulado no formato de cartão SD (facilitando a substituição) e conectado a um circuito controlador, permitindo comunicação com um display ou computador, como mostrado na Figura 17a. Canais microfluídicos permitem o contato da solução com os sensores. Em Au et al. [58], chips com os sensores foram implementados em placa de circuito impresso (servindo como cartuchos descartáveis) conectados a um circuito de leitura e controle operado por bateria, permitindo conexão bluetooth com um celular, como mostra a Figura 17b.

Figura 17 – Encapsulamento: (a) formato cartão SD; (b) cartuchos.

Fonte: [15], [58].

O sistema para sequenciamento de DNA apresentado por Rothberg *et al.* [5] possui um *chip* com micropoços sobre a matriz de ISFETs (Figura 18a). Foi encapsulado automaticamente em uma célula fluídica de policarbonato (Figura 18b), de forma a isolar o fluido em contato com a matriz de ISFETs dos contatos eletrônicos, além de fornecer interface elétrica e fluídica para o instrumento de sequenciamento comercializado pela empresa *Ion Torrent*, mostrado na Figura 18c [59].

> Figura 18 - Sequenciamento de DNA: (a) Micro poços; (b) Encapsulamento; (c) Máquina de sequenciamento.

(b) Fonte: [5], [59].

5 CIRCUITOS DE LEITURA DOS ISFETS

Como já abordado, com ISFETs pode-se fazer medidas diferenciais ou não diferenciais. A seguir serão apresentados exemplos de circuitos de leitura empregados em cada caso.

5.1 CIRCUITOS PARA MEDIDAS NÃO-DIFERENCIAIS

Uma técnica utilizada em diversas publicações devido a sua simplicidade é a de seguidor de fonte (Figura 19a), na qual mede-se o potencial do terminal de fonte enquanto a corrente de dreno e os potenciais nos demais terminais do ISFET estão fixos [13], [60], [61], [62]. Assim, variações na tensão de limiar devido à mudança de pH serão refletidas no terminal de fonte, como pode ser analisado utilizando a equação (10). Esse método, apesar de apresentar um circuito compacto, pode gerar uma alternância entre o regime linear e de saturação do ISFET, pois o potencial entre dreno e fonte V_{DS} não é mantido fixo [55].

Outra técnica bastante aplicada é a de seguidor de fonte e de dreno (CVCC - *Constant-Voltage, Constant-Current*) [6, 13, 24]. Neste caso, polariza-se o ISFET com uma corrente de dreno I_D e tensão entre dreno e fonte V_{DS} fixas, garantindo que o dispositivo não mude a região de operação. Como no caso anterior, mudanças da tensão de limiar com o pH da solução são medidas no terminal de fonte. Exemplo de circuito implementando essa técnica é mostrado na Figura 19b.

Outra forma de polarização é a de leitura de corrente [23]. Neste caso, mede-se a corrente I_D do ISFET enquanto os terminais estão com tensões fixas. Desse modo, mudanças na tensão de limiar devido a variações de pH podem ser mensuradas em I_D . Esse método traz benefícios como operações em corrente e maior compatibilidade com inversão fraca. Na Figura 19c está um exemplo de circuito para esse caso.

Uma forma de leitura não mais empregada atualmente é a que utiliza realimentação para o eletrodo. Nesse caso é realizada a leitura na tensão que polariza o eletrodo, mantendo constantes a corrente e as tensões nos demais terminais do ISFET através de um laço de realimentação. Esse método força a solução a um potencial que pode ser intolerável ao circuito e, além disso, não se mostra prático em matrizes, pois exigiria eletrodos individuais para cada pixel, dificultando o procedimento de medida [11]. No lugar deste método, se polariza os diversos sensores da matriz com um único eletrodo. Os métodos de leitura citados anteriormente vêm originando outras arquiteturas, tais como a *active pixel sensor* – APS (técnica utilizada em sensores de imagem) e topologias que convertem pH para outros domínios como tempo ou frequência (para aumentar o SNR – *signal-to-noise ratio*), entre outras [10]. Há também que se considerar os benefícios de polarizar ISFETs próximo à tensão de limiar ou em *subthreshold*, visto que a relação g_m/I_D é aumentada e a capacitância devido a cargas de inversão é reduzida [32].

Figura 19 - Circuitos de leitura (a) seguidor de fonte [60].(b) seguidor de fonte e dreno [11]. (c) modo corrente [23].

Fonte: Elaborada pelo autor.

5.2 CIRCUITOS PARA MEDIDAS DIFERENCIAIS

Como já comentado, medidas diferenciais permitem cancelar tensões e correntes de modo comum entre sensores, o que é útil para diminuir efeitos de temperatura, ruído e deriva temporal da tensão de limiar, além de possibilitar o uso de pseudoeletrodos. Com ISFETs, essas medidas podem ser implementadas entre par ISFET/MOSFET, ISFET/REFET e ISFET/ISFET com diferentes sensibilidades ao pH ou medindo diferentes soluções, uma das quais serve como referência.

Um exemplo de implementação utiliza um par ISFET/REFET polarizados por um pseudoeletrodo, sendo a leitura de saída a diferença

entre as tensões de fonte do ISFET e do REFET, obtida por um amplificador de instrumentação (Figura 20a) [53]. Outro exemplo aplica um par ISFET/ISFET para medida de diferentes soluções em uma célula de Gilbert (Figura 20b), na qual a corrente de saída é a diferença entre as correntes de cada ISFET [21].

Figura 20 - Circuito de leitura diferencial (a) em tensão [53]. (b) em corrente [21].

Fonte: Elaborada pelo autor.

Também já foi utilizado com ISFETs a Ponte de Wheatstone [63], que é um condicionador de sinais baseado no balanço das resistências do circuito. Neste caso, o pH da solução é obtido através da tensão V_{out} , que varia devido ao desbalanceamento do circuito causado por mudanças na condutividade do canal do transistor permitindo medições utilizando ISFET/MOSFET e ISFET/REFET ao se polarizar devidamente os dispositivos, como ilustra Figura 21.

Fonte: Elaborada pelo autor.

Medidas diferenciais entre ISFET e MOSFET também podem ser aplicadas utilizando a técnica CIMP (*complementary ISFET/MOSFET pair*), na qual os circuitos baseiam-se em um par complementar CMOS com terminais de porta não conectados (chamado pseudoinversor) sendo um dos MOSFET substituído por um ISFET equivalente [64]. Os autores implementaram realimentação tanto para o terminal de porta quanto para o de fonte do ISFET (realimentação direta) ou do MOSFET (indireta). No caso de realimentação para o terminal de porta do MOSFET, ilustrado na Figura 22, um amplificador operacional é utilizado para manter o potencial V_{DS} constante no ISFET através de um laço de realimentação aplicado na porta do MOSFET pelo potencial V_{out} , que varia com o pH da solução sendo a saída do circuito.

Fonte: Elaborada pelo autor.

Apesar dos benefícios, circuitos implementando medidas diferenciais com ISFETs apresentam certos desafios no projeto, como o *offset* aleatório da tensão de limiar devido a cargas armazenadas [10]. Portanto, exige-se algum método de compensação (como exposição ultravioleta) para a implementação desse modo de leitura.

Cada circuito de leitura apresenta certas vantagens e limitações, portanto sua escolha dependerá da aplicação do sistema. Um quadro comparativo entre diferentes arquiteturas é apresentado por Moser *et al.* [10].

6 PROJETO DO CIRCUITO INTEGRADO

6.1 TECNOLOGIA SILTERRA D18V

Para o projeto do circuito integrado utilizou-se a tecnologia SilTerra 180 nm D18V, disponibilizada pelas empresas Chipus Microeletrônica S.A. e SilTerra Malaysia Sdn Bhd. Nessa tecnologia há transistores com óxido espesso (12.5 nm) e fino (2.95 nm), suportando tensões V_{GS} máximas de 5.5 V e 1.98 V, respectivamente. Considerou-se importante a possibilidade de se utilizar óxido espesso para implementar os ISFETs devido à maior tensão V_{GS} suportada, o que é útil para se lidar com a alta dispersão da tensão de limiar prevista para esses dispositivos pós-fabricação. Preços e características de outras tecnologias de alta tensão estão listados no APÊNDICE B – Preços e características de tecnologias HV.

O processo dispõe de 6 níveis de metais e possui como camada de passivação Si₃N₄ com 500 nm de espessura, seguida de USG (*Undoped Silicate Glass*) com 900 nm, e permissividades relativas ε_r de 7.5 e 4.2, respectivamente, com os desvios máximos de espessura mostrados na Tabela 2.

Tabela 2 - Falametros da passivação Siriena Disv.				
Dessive año	Espessura (nm)			0
Fassivação	Mínima	Típica	Máxima	Сr
USG	800	900	1000	4.2
Si_3N_4	450	500	550	7.5
Fonte: [65].				

Tabela 2 - Parâmetros da passivação SilTerra D18V.

A Figura 23, ilustra o corte transversal do processo utilizado, sendo PASS2 a camada de Si_3N_4 e PASS1, a de USG.

Utilizando-se o procedimento g_m/I_D descrito em [49], os dispositivos nMOS e pMOS de óxido espesso (nto_5 e pto_5 respectivamente) foram caracterizados via simulação no *software* Virtuoso[®] para $W/L=9\mu m/1.8\mu m$. Os resultados estão na Tabela 3.

Tabela 3 - Caracterização transistores 5V SilTerra D18V.					
Dispositivo	$I_{S}(\mathbf{nA})$	Vt _{mos} (V)	n	t_{ox} (nm)	$ V_{GS(max)} $ (V)
nto_5	306	0.747	1.61	12.5	5.5
pto_5	115	-0.783	1.58	12.5	5.5
Fonte: Elaborada pelo autor.					

6.2 CHIP COM ELEMENTOS PARA CARACTERIZAÇÃO

Foi realizado um *chip* composto de 15 nISFETs, 15 pISFETs além de um nMOS e um pMOS de referência para caracterização na tecnologia SilTerra D18V.

6.2.1 Pixel design

Como relatado em trabalhos anteriores, melhores resultados são obtidos para metal de topo no formato quadrado e uma elevada razão entre área do metal de topo (A_{pass}) e área de porta (A_{mos}) [66], [32].

Portanto, cada pixel foi projetado considerando um formato quadrado e com a área de topo máxima permitida pelo DRC da tecnologia $(A_{pass(max)}=400A_{mos})$.

Cada ISFET foi dimensionado considerando $L=3L_{min}$ ($L_{min}=600$ nm para transistores 5V) e razão de aspecto 5, resultando na dimensão $W/L=9\mu m/1.8\mu m$. Portanto, a área de porta é de 16.2 μ m².

O metal de topo foi dimensionado com formato quadrado de lado 80 μ m resultando em $A_{pass}=395A_{mos}$. Além disso, para permitir retirada de cargas do óxido do transistor através de radiação ultravioleta [24], foi feita uma abertura de dimensões mínimas (3 μ m x 3 μ m) na camada de topo sobre a porta do transistor.

Com as dimensões citadas, é possível calcular a capacitância de óxido por (26):

$$C_{ox} = \frac{3.9\varepsilon_0 A_{mos}}{12.5nm} = 44fF \tag{26}$$

As capacitâncias nas camadas de Si_3N_4 e USG são obtidas, respectivamente, por (27) e (28):

$$C_{SiN} = \frac{7.5\varepsilon_0 A_{pass}}{500nm} = 849 fF \tag{27}$$

$$C_{USG} = \frac{4.2\varepsilon_0 A_{pass}}{900nm} = 264 fF \tag{28}$$

Portanto a capacitância total da passivação Cpass é (29):

$$C_{pass} = \frac{C_{SiN}C_{USG}}{C_{SiN} + C_{USG}} = 201 fF$$
(29)

Assim, a capacitância da passivação ficou aproximadamente 4.5 vezes maior que a capacitância do óxido. Na Figura 24a está o leiaute do pixel tipo N e na Figura 24b, da matriz de 5x5 nISFETs (sendo o tipo P feito de maneira análoga). Os transistores nMOS e pMOS de referência também foram projetados com $W/L=9\mu m/1.8\mu m$.

Figura 24 – Estrutura: (a) pixel; (b) matriz de nISFETs.

Fonte: Elaborada pelo autor.

6.2.2 Projeto das Matrizes

Foram elaboradas duas matrizes, uma de nISFETs (leiaute na Figura 24b) e outra de pISFETs, de 5x5 elementos, além de um transistor nMOS e outro pMOS de referência (com acesso ao terminal de porta). As matrizes foram projetadas com um distanciamento de 5 um entre os metais de topo de cada ISFET, resultando em uma área de sensibilidade de 420 x 420 um².

Na Figura 25 está o esquemático das matrizes tipo N e P.

Figura 25 - Esquemático das matrizes (a) tipo N. (b) tipo P.

Fonte: Elaborada pelo autor.

Como se nota no esquemático, os transistores da matriz possuem os terminais de fonte interligados em um *pad*, e os de corpo em outro *pad*, enquanto os terminais de dreno de cada ISFET podem ser acessados individualmente. Já os transistores de referência possuem acesso aos terminais de porta, dreno e fonte, tendo os terminais de corpo conectados aos dos ISFETs.

Com a área disponibilizada, foram incluídos 40 *pads*, portanto, dos 25 elementos de cada matriz ficaram disponíveis para caracterização 15 nISFETs e 15 pISFETs, além dos transistores de referência. As matrizes N e P foram posicionadas com 31 um de distância entre elas. A área final do *chip* é de 2.28 x 2.28 mm² com uma área de sensibilidade de 871 x 420 um² como ilustrado na Figura 26. Em vermelho estão os ISFETs com terminais conectados para caracterização, os demais não foram conectados. Os *pads* foram implementados sem proteção ESD de forma a não se ter influência de outros elementos nas medições, e projetados com dimensões de 120 x 120 um² com *pitch* de 200 um para facilitar as medições.

Figura 26 – Leiaute do chip para caracterização.

Fonte: Elaborada pelo autor.

Maiores detalhes das dimensões e conectividade dos elementos estão no APÊNDICE C – Detalhes do *chip* projetado. Este *chip* foi enviado para prototipagem em abril de 2018, estando em fabricação até o momento da escrita deste texto.

7 RESULTADOS OBTIDOS POR SIMULAÇÃO

A partir das dimensões e parâmetros tecnológicos descritos no projeto do circuito integrado e o modelo matemático abordado anteriormente, simulações foram realizadas através de um algoritmo desenvolvido no *software* Matlab[®] presente no APÊNDICE D – Algoritmo Matlab.

A extração dos parâmetros dos dispositivos NMOS e PMOS de óxido espesso da tecnologia SilTerra D18V com W/L=9um/1.8um resumida na Tabela 3, pode ser verificada nos gráficos $I_d x V_{GB}$ e $gm/I_d x V_{GB}$ da Figura 27. Percebe-se a proximidade das curvas do modelo ACM com o implementando pelo PDK da tecnologia no *software* Virtuoso[®].

Figura 27 - Curvas $I_d x V_{GB}$ e $gm/I_d x V_{GB}$ para NMOS e PMOS 5 V da tecnologia SilTerra D18V (W/L=9um/1.8um).

Fonte: Elaborada pelo autor.

Para a simulação dos ISFETs projetados foi adotado um nISFET com as dimensões utilizadas no projeto do *chip*, eletrodo de Ag/AgCl, eletrólito 1:1, com concentração de 0.1 mol/L e camada de passivação formada por Si_3N_4 . Os parâmetros utilizados estão reproduzidos na Tabela 4.

Parâmetro	Valor	Unidade
C^*	0.1	mol/L
K_+	15.8	mol/L
Κ.	63.1*10 ⁻⁹	mol/L
K_n	1*10 ⁻¹⁰	mol/L
Nsil	$3*10^{18}$	m ⁻²
Nnit	$2*10^{18}$	m ⁻²
E_{ref}	4.63	V
X_{sol}	3	mV
	4.7	V
${\it {\it O}}_{lj}$	1	mV
x_2	0.5	nm
Er	78.49	-
C_{USG}	264	fF
C_{SiN}	849	fF
W	9	um
L	1.8	um
Vt_{mos}	0.747	V
Is	306	nA
n	1.61	-
t_{ox}	12.5	nm
Т	25	°C

Tabela 4 - Parâmetros utilizados na simulação.

Fonte: Elaborada pelo autor.

A Figura 28 mostra a relação de \emptyset_{eo} e Vt_{isf} com o pH da solução. Percebe-se o decrescimento de \emptyset_{eo} e o consequente aumento de Vt_{isf} com o pH, como descrito pela equação (19).

Figura 28 - $Ø_{eo}$ e Vt_{isf} em relação ao pH.

Na Figura 29 estão as curvas $I_D \ge V_{ref}$ de acordo com o pH considerando parâmetros do nISFET projetado e $V_{DS} = 1$ V.

Fonte: Elaborada pelo autor.

O comportamento de $I_d \times V_{DS}$ para diferentes valores de pH e $V_{ref} = 1 V$ está na Figura 30.

Fonte: Elaborada pelo autor.

Percebe-se, nas curvas $I_D \ge V_{ref}$ e $I_D \ge V_{DS}$ apresentadas, a influência da variação de $V_{t_{isf}}$ com o pH no comportamento da corrente e das tensões nos terminais do ISFET, como expresso pela equação (10).

A Figura 31 mostra capacitâncias por unidade de área resultantes do modelo de Gouy-Chapman-Stern C'_H , $C'_G \in C'_{eq}$ para diferentes valores de pH. Nota-se o valor constante de C'_H , visto que é função de x_2 , e o formato característico de C'_G , que varia de acordo com \emptyset_2 (e portanto com o pH) como expresso na equação (7).

Figura 31 - Capacitâncias de Gouy-Chapman-Stern.

Fonte: Elaborada pelo autor.

Além disso, a tensão aplicada ao terminal de porta do ISFET é atenuada em relação a V_{ref} devido ao divisor capacitivo, como mostrado na equação (14). Os parâmetros do sistema simulado resultaram em $V_{GB}=0.84V_{ref}$.

Da Figura 28 pode-se obter a sensibilidade de Vt_{isf} ao pH (dVt_{isf}/dpH). Essa sensibilidade é comparada à obtida pela equação (23) no gráfico da Figura 32.

Figura 32 - Sensibilidade de Vtisf ao pH

Fonte: Elaborada pelo autor.

Nota-se uma sensibilidade média de 45.3 mV/pH na faixa de pH 1 a 10, o que corresponde a $\alpha = 0.77$. Além disso, percebe-se que os valores simulados de dVt_{isf}/dpH e os previstos pela equação $2.3\alpha O_t$ estão próximos.

Comparando essa sensibilidade com as apresentadas na Tabela 1, percebe-se que está de acordo com os valores práticos obtidos em diversas publicações. Nesta simulação não se está considerando a deriva temporal e o *offset* de Vt_{isf} pois essas não-idealidades ainda carecem de modelos precisos, e dependem da tecnologia utilizada, necessitando de caracterização em bancada.

8 CONCLUSÃO

Neste projeto foi realizado um estudo sobre ISFETs, abordando suas principais aplicações, não-idealidades e modelo matemático. Notase a importância em caracterizar esses dispositivos fisicamente, devido a não-idealidades ainda sem modelos definitivos, como *offset* da tensão de limiar devido a cargas armazenadas e deriva temporal.

Neste contexto foi projetado um *chip* para caracterização na tecnologia SilTerra 180nm D18V utilizando o *software* Virtuoso[®]. Além disso, foi elaborado um algoritmo no *software* Matlab[®] implementando o modelo matemático dos ISFETs baseado na teoria de *binding site*, no modelo de dupla camada de Gouy-Chapman-Stern, e no modelo ACM do transistor, que é válido em todas as regiões de operação, obtendo-se sensibilidades ao pH próximas às reportadas por artigos da área.

Pesquisas futuras incluem a caracterização elétrica (*mismatch* e deriva da tensão de limiar, atenuação capacitiva, análise de transcondutância, etc.) e de sensibilidade ao pH do *chip* fabricado, incluindo a aplicação de procedimentos para redução do *mismatch* da tensão de limiar (como uso de radiação ultravioleta). Além disso, resultados de bancada poderão ser comparados aos simulados pelo modelo apresentado.

Após devidamente caracterizada, a matriz de ISFETs poderá ser implementada em um sistema mais completo (composto por sensores e atuadores de temperatura, câmaras, encapsulamento adequado, circuito de polarização *on chip*, etc.) para ser utilizada em análises de amostras bioquímicas permitindo, por exemplo, a detecção de vírus e bactérias.

REFERÊNCIAS

- [1] W. H. O. WHO, "World Health Statistics 2017: Monitoring health for the SDGs," 2017.
- [2] W. H. O. WHO, "Dengue and severe dengue," 2017.
- [3] P. Bergveld, "Development of an Ion-Sensitive Solid-State Device for Neurophysiological Measurements," *IEEE Transactions on Biomedical Engineering*, vol. BME-17, pp. 70-71, 1970.
- [4] J. Bausells, J. Carrabina, A. Errachid, and A. Merlos, "Ionsensitive field-effect transistors fabricated in a commercial CMOS technology," *Sensors and Actuators B: Chemical*, vol. 57, pp. 56-62, 1999/09/07/1999.
- [5] J. M. Rothberg, W. Hinz, T. M Rearick, J. Schultz, W. Mileski, M. Davey, *et al.*, "An Integrated Semiconductor Device Enabling Non-Optical Genome Sequencing," *Nature*, vol. 475, pp. 348-52, 2011.
- [6] M. J. Milgrew, M. O. Riehle, and D. R. S. Cumming, "A 16 x 16 CMOS Proton Camera Array for Direct Extracellular Imaging of Hydrogen-Ion Activity," in 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, Pennsylvania, 2008, pp. 590-638.
- [7] M. L. Pourciel, W. Sant, I. Humenyuk, L. Malaquin, X. Dollat, and P. Temple-Boyer, "Development of pH-ISFET sensors for the detection of bacterial activity," *Sensors and Actuators B: Chemical*, vol. 103, pp. 247-251, 2004.
- [8] N. Moser, J. Rodriguez-Manzano, L. S. Yu, M. Kalofonou, S. d. Mateo, X. Li, et al., "Live demonstration: A CMOS-based ISFET array for rapid diagnosis of the Zika virus," in 2017 IEEE International Symposium on Circuits and Systems (ISCAS), 2017, pp. 1-1.
- [9] Z. K. Njiru, "Loop-Mediated Isothermal Amplification Technology: Towards Point of Care Diagnostics," *PLoS Neglected Tropical Diseases*, vol. 6, p. e1572, 06/26 2012.
- [10] N. Moser, T. S. Lande, C. Toumazou, and P. Georgiou, "ISFETs in CMOS and Emergent Trends in Instrumentation: A Review," *IEEE SENSORS JOURNAL*, vol. 16, September 2016.
- [11] P. Bergveld, "Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years," *Sensors and Actuators B: Chemical*, vol. 88, pp. 1-20, 2003/01/01/ 2003.
- [12] H. Xiwei, W. Fei, G. Jing, Y. Mei, Y. Hao, and Y. Kiat Seng, "A 64 x 64 1200fps CMOS ion-image sensor with suppressed fixedpattern-noise for accurate high-throughput DNA sequencing

(slides)," in *Symposia on VLSI Technology and Circuits*, ed. New Jersey, 2014.

- [13] H. Xiwei, W. Fei, G. Jing, Y. Mei, Y. Hao, and Y. Kiat Seng, "A 64 x 64 1200fps CMOS ion-image sensor with suppressed fixedpattern-noise for accurate high-throughput DNA sequencing," in 2014 Symposium on VLSI Circuits Digest of Technical Papers, New Jersey, 2014, pp. 1-2.
- [14] D. M. Garner, H. Bai, P. Georgiou, T. G. Constandinou, S. Reed, L. M. Shepherd, *et al.*, "A multichannel DNA SoC for rapid pointof-care gene detection," in 2010 IEEE International Solid-State Circuits Conference - (ISSCC), 2010, pp. 492-493.
- [15] C. Toumazou, L. M. Shepherd, S. C. Reed, G. I. Chen, A. Patel, D. M. Garner, *et al.*, "Simultaneous DNA amplification and detection using a pH-sensing semiconductor system," *Nat Meth*, vol. 10, pp. 641-646, 07//print 2013.
- [16] K. Wetterstrand. DNA Sequencing Costs: Data [Online]. Available: https://www.genome.gov/sequencingcostsdata/
- [17] N. Moser, C. L. Leong, Y. Hu, M. Boutelle, and P. Georgiou, "An ion imaging ISFET array for Potassium and Sodium detection," in 2016 IEEE International Symposium on Circuits and Systems (ISCAS), 2016, pp. 2847-2850.
- [18] B. Nemeth, M. S. Piechocinski, and D. R. S. Cumming, "Highresolution real-time ion-camera system using a CMOS-based chemical sensor array for proton imaging," *Sensors and Actuators B: Chemical*, vol. 171-172, pp. 747-752, 2012/08/01/ 2012.
- [19] Y. Hu, N. Moser, and P. Georgiou, "A 32 x 32 ISFET Chemical Sensing Array With Integrated Trapped Charge and Gain Compensation," *IEEE Sensors Journal*, vol. 17, pp. 5276-5284, 2017.
- [20] N. Moser, C. L. Leong, Y. Hu, M. Boutelle, and P. Georgiou, "Live demonstration: Real-time chemical imaging of ionic solutions using an ISFET array," in 2017 IEEE International Symposium on Circuits and Systems (ISCAS), 2017, pp. 1-1.
- [21] M. Kalofonou and C. Toumazou, "A Low Power Sub-uW Chemical Gilbert Cell for ISFET Differential Reaction Monitoring," *IEEE Transactions on Biomedical Circuits and Systems*, vol. 8, pp. 565-574, 2014.
- [22] B. C. Cheah, A. I. Macdonald, C. Martin, A. J. Streklas, G. Campbell, M. A. Al-Rawhani, *et al.*, "An Integrated Circuit for Chip-Based Analysis of Enzyme Kinetics and Metabolite Quantification," *IEEE Transactions on Biomedical Circuits and Systems*, vol. 10, pp. 721-730, 2016.
- [23] M. Douthwaite, N. Moser, E. Koutsos, D. Yates, P. Mitcheson, and P. Georgiou, "A CMOS ISFET array for wearable thermoelectrically powered perspiration analysis," in 2016 IEEE Biomedical Circuits and Systems Conference (BioCAS), 2016, pp. 54-57.
- [24] M. J. Milgrew and D. R. S. Cumming, "Matching the Transconductance Characteristics of CMOS ISFET Arrays by Removing Trapped Charge," *IEEE Transactions on Electron Devices*, vol. 55, pp. 1074-1079, 2008.
- [25] P. Georgiou and C. Toumazou, "ISFET threshold voltage programming in CMOS using hot-electron injection," *Electronics Letters*, vol. 45, pp. 1112-1113, 2009.
- [26] A. g. Al-Ahdal and C. Toumazou, "ISFET threshold voltage programming in CMOS using electron tunnelling," *Electronics Letters*, vol. 47, pp. 1398-1399, 2011.
- [27] P. Georgiou and C. Toumazou, "CMOS-based programmable gate ISFET," *Electronics Letters*, vol. 44, pp. 1289-1290, 2008.
- [28] Y. Hu and P. Georgiou, "A Robust ISFET pH-Measuring Front-End for Chemical Reaction Monitoring," *IEEE Transactions on Biomedical Circuits and Systems*, vol. 8, pp. 177-185, 2014.
- [29] N. Moser, T. S. Lande, and P. Georgiou, "A robust ISFET array with in-pixel quantisation and automatic offset calibration," in 2016 IEEE Biomedical Circuits and Systems Conference (BioCAS), 2016, pp. 50-53.
- [30] C. G. Jakobson, M. Feinsod, and Y. Nemirovsky, "Low frequency noise and drift in Ion Sensitive Field Effect Transistors," *Sensors* and Actuators B: Chemical, vol. 68, pp. 134-139, 2000/08/25/ 2000.
- [31] P. A. Hammond, D. Ali, and D. R. S. Cumming, "A system-onchip digital pH meter for use in a wireless diagnostic capsule," *IEEE Transactions on Biomedical Engineering*, vol. 52, pp. 687-694, 2005.
- [32] G. Xu, J. Abbott, and D. Ham, "Optimization of CMOS-ISFET-Based Biomolecular Sensing: Analysis and Demonstration in DNA Detection," *IEEE Transactions on Electron Devices*, vol. 63, pp. 3249-3256, 2016.
- [33] M. W. Shinwari, D. Zhitomirsky, I. A. Deen, P. R. Selvaganapathy, M. J. Deen, and D. Landheer, "Microfabricated Reference Electrodes and their Biosensing Applications," *Sensors* (*Basel, Switzerland*), vol. 10, pp. 1679-1715, 2010.
- [34] P. A. Hammond, D. Ali, and D. R. S. Cumming, "Design of a single-chip pH sensor using a conventional 0.6um CMOS process," *IEEE Sensors Journal*, vol. 4, pp. 706-712, 2004.

- [35] R. Scaff, "Caracterização elétrica de dispositivos tipo ISFET com estrutura Si/SiO2/Si3N4 para medição de pH utilizando pseudoeletrodos de Pt, Ag e Au.," Dissertação (Mestrado em Engenharia Elétrica), Escola Politécnica, Universidade de São Paulo, São Paulo, 2008.
- [36] A. J. Bard and L. R. Faulkner, *Electrochemical Methods: Fundamentals and Applications*, 2 ed.: Wiley, 2000.
- [37] T. L. Brown, H. E. LeMay, B. E. Bursten, and J. R. Burdge, *Química - A Ciência Central*, 9 ed ed. São Paulo: Pearson Education do Brasil, 2005.
- [38] T. Matsui, Y. Kitagawa, M. Okumura, and Y. Shigeta, "Accurate Standard Hydrogen Electrode Potential and Applications to the Redox Potentials of Vitamin C and NAD/NADH," *The Journal of Physical Chemistry A*, vol. 119, pp. 369-376, 2015/01/15 2015.
- [39] IUPAC, "Compendium of Chemical Terminology Gold Book," 2014.
- [40] E. Generalic. (2017, 18/04/2018). Silver/silver-chloride electrode. Available: https://glossary.periodni.com/glossary.php?en=silver%2Fsilverchloride+electrode
- [41] E. Salm, Y. Zhong, B. Reddy, C. Duarte-Guevara, V. Swaminathan, Y.-S. Liu, *et al.*, "Electrical Detection of Nucleic Acid Amplification Using an On-Chip Quasi-Reference Electrode and a PVC REFET," *Analytical Chemistry*, vol. 86, pp. 6968-6975, 2014/07/15 2014.
- [42] R. E. G. Van Hal, J. C. T. Eijkel, and P. Bergveld, "A novel description of ISFET sensitivity with the buffer capacity and double-layer capacitance as key parameters," *Sensors and Actuators B: Chemical*, vol. 24, pp. 201-205, 3// 1995.
- [43] L. M. Shepherd and C. Toumazou, "A biochemical translinear principle with weak inversion ISFETs," *IEEE Transactions on Circuits and Systems I: Regular Papers*, vol. 52, pp. 2614-2619, 2005.
- [44] P. Atkins, J. d. Paula, and J. Keeler, *ATKINS' PHYSICAL CHEMISTRY*, 8 ed ed. New York: W. H. Freeman and Company, 2006.
- [45] S. Martinoia and G. Massobrio, "A behavioral macromodel of the ISFET in SPICE," *Sensors and Actuators B: Chemical*, vol. 62, pp. 182-189, 2000/03/10/ 2000.
- [46] P.Bergveld, "ISFET, Theory and Practice," presented at the IEEE Sensor, Toronto, 2003.

- [47] M. Grattarola, G. Massobrio, and S. Martinoia, "Modeling H+ sensitive FETs with SPICE," *IEEE Transactions on Electron Devices*, vol. 39, pp. 813-819, 1992.
- [48] P. Ghosh, "Electrostatic Double Layer Force: Part II," 05/03/2018 2012.
- [49] M. C. Schneider and C. Galup-Montoro, CMOS Analog Design Using All-Region MOSFET Modeling. New York: Cambridge University Press, 2010.
- [50] P. Georgiou and C. Toumazou, "ISFET characteristics in CMOS and their application to weak inversion operation," *Sensors and Actuators B: Chemical*, vol. 143, pp. 211-217, 2009/12/04/ 2009.
- [51] S. Martinoia, G. Massobrio, and L. Lorenzelli, "Modeling ISFET microsensor and ISFET-based microsystems: a review," *Sensors and Actuators B: Chemical*, vol. 105, pp. 14-27, 2005/02/14/ 2005.
- [52] T. Matsuo and M. Esashi, "Methods of ISFET fabrication," *Sensors and Actuators*, vol. 1, pp. 77-96, 1981/01/01/1981.
- [53] M. J. Milgrew, P. A. Hammond, and D. R. S. Cumming, "The development of scalable sensor arrays using standard CMOS technology," *Sensors and Actuators B: Chemical*, vol. 103, pp. 37-42, 2004/09/29/ 2004.
- [54] J. C. Dutta, "Ion sensitive field effect transistor for applications in bioelectronic sensors: A research review," in 2012 2nd National Conference on Computational Intelligence and Signal Processing (CISP), 2012, pp. 185-191.
- [55] R. M. d. Ponte, "Circuito condicionador de ultrabaixo consumo para sensor ISFET," Dissertação (mestrado), Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal de Santa Catarina, Florianópolis, 2015.
- [56] V. K. Khanna, "Critical issues, processes and solutions in ISFET packaging," *Microelectronics International*, vol. 25, pp. 23-30, 2008/04/18 2008.
- [57] V. F. Cardoso, "Integração de microssensores a microlaboratórios autônomos através de técnicas de montagem por viragem (Flip-Chip)." Dissertação (Mestrado em Microeletrônica) Escola Politécnica, Universidade de São Paulo, São Paulo, 2014.
- [58] A. Au, N. Moser, J. Rodriguez-Manzano, and P. Georgiou, "Live Demonstration: A Mobile Diagnostic System for Rapid Detection and Tracking of Infectious Diseases," in 2018 IEEE International Symposium on Circuits and Systems (ISCAS), 2018, pp. 1-1.
- [59] J. Rothberg, "1.3 The development of high-speed DNA sequencing: Jurassic Park, Neanderthal, Moore, and you," in 2017 IEEE International Solid-State Circuits Conference (ISSCC), 2017, pp. 23-23.

- [60] K. Fife, K. Johnson, and M. Milgrew, "Two-Transistor Pixel Array," United States Patent, Jan. 5, 2012, 2012.
- [61] N. Miscourides and P. Georgiou, "Impact of Technology Scaling on ISFET Performance for Genetic Sequencing," *IEEE Sensors Journal*, vol. 15, pp. 2219-2226, 2015.
- [62] W. Xiao, N. Miscourides, and P. Georgiou, "A novel ISFET sensor architecture using through-Silicon vias for DNA sequencing," 2017.
- [63] A. Morgenshtein, L. Sudakov-Boreysha, U. Dinnar, C. G. Jakobson, and Y. Nemirovsky, "Wheatstone-Bridge readout interface for ISFET/REFET applications," *Sensors and Actuators B: Chemical*, vol. 98, pp. 18-27, 2004/03/01/ 2004.
- [64] A. Morgenshtein, L. Sudakov-Boreysha, U. Dinnar, C. G. Jakobson, and Y. Nemirovsky, "CMOS readout circuitry for ISFET microsystems," *Sensors and Actuators B: Chemical*, vol. 97, pp. 122-131, 2004/01/01/ 2004.
- [65] SilTerra, "GEN3 BCD18VXX (D18V) ELECTRICAL DESIGN RULES (SH110-000003-00)," 2017.
- [66] M. Sohbati and C. Toumazou, "Dimension and Shape Effects on the ISFET Performance," *IEEE Sensors Journal*, vol. 15, pp. 1670-1679, 2015.

APÊNDICE A – Teorias de site-binding e de Gouy-Chapman-Stern

TEORIA DO SITE BINDING

Para a superfície de Si_3N_4 as reações químicas na interface isolante/solução são descritas por (30), (31) e (32) [47]:

$$SiOH \leftrightarrow SiO^- + H_s^+$$
 (30)

$$SiOH_2^+ \leftrightarrow SiOH + H_s^+$$
 (31)

$$SiNH_3^+ \leftrightarrow SiNH_2 + H_s^+$$
 (32)

Com H_s representando a concentração de prótons na superfície do isolante. A constante de equilíbrio é o valor numérico obtido quando se substitui as pressões parciais ou concentrações molares reais no equilíbrio na expressão da constante de equilíbrio [37]. Assim, pode-se obter as seguintes constantes de equilíbrio (33), (34) e (35):

$$K_{-} = \frac{[SiO^{-}][H^{+}]_{s}}{[SioH]}$$
(33)

$$K_{+} = \frac{[SiOH][H^{+}]_{s}}{[SiOH_{2}^{+}]}$$
(34)

$$K_n = \frac{[SiNH_2][H^+]_s}{[SiOH_3^+]}$$
(35)

Com estas constantes, é possível calcular a densidade de carga na superfície do isolante σ_o é dada por (4) [47]:

$$\sigma_o = \left(\frac{H_s^2 - K_- K_+}{H_s^2 + K_+ H_s + K_+ K_-}\right) qNsil + \left(\frac{H_s}{H_s + K_n}\right) qNnit$$
(36)

Sendo *Nsil* o número de sites de silanol por área e *Nnit* o número de sites de aminas primárias por área. Além disso, H_s é relacionado a concentração de prótons na solução (H_b) através da equação de Boltzmann:

$$H_s = H_b \exp\left(-\frac{\phi eo}{\phi_t}\right) \tag{37}$$

O MODELO DE GOUY-CHAPMAN-STERN

Este modelo considera uma separação de cargas, com cargas sendo armazenadas em uma compacta camada próxima à superfície (camada Helmholtz) e cargas difusas seguindo a distribuição de Boltzmann (camada Gouy-Chapman).

Camada de Helmholtz:

Nesta camada, ilustrada na Figura 33, o potencial varia de maneira linear e as cargas ficam distribuídas em uma camada compacta próxima ao eletrodo. O limite desta camada é chamado *Outer Helmholtz Plane* (OHP). O potencial em relação a distância ao eletrodo nesta camada é dado por (8):

$$\emptyset = \emptyset_{eo} - \frac{\sigma_o}{C'_H} \tag{38}$$

Com \emptyset_{eo} a queda de potencial total sobre a camada e C'_H a capacitância de Helmholtz por unidade de área definida a seguir.

Figura 33 - Perfil de cargas e de potencial na camada de Helmholtz.

Esta estrutura é semelhante a de um capacitor de placas paralelas, portanto a capacitância de Helmholtz por unidade de área é dada pela equação (39) [36]:

$$C'_{H} = \frac{\varepsilon_{r}\varepsilon_{0}}{x} \tag{39}$$

Sendo ε_r a permissividade relativa do meio e x a distância ao eletrodo.

Camada de Gouy-Chapman:

Na camada de Helmholtz não é considerado o efeito térmico sobre as partículas. Esse efeito é levado em conta na camada de Gouy-Chapman, no qual as cargas seguem uma distribuição difusa (*diffuse layer*) seguindo a lei de Boltzman, como ilustrado na Figura 34.

Figura 34 - Perfil de cargas e de potencial na camada de Gouy-Chapman.

Pode-se imaginar a solução dividida em *i* lâminas paralelas ao eletrodo e com espessura dx, as quais não estão sob a mesma energia devido a diferença de potencial [36]. A concentração de íons (n_i) é dada pela distribuição de Boltzmann (40):

$$n_i = n^0 e^{\frac{-z_i \phi}{\phi_t}} \tag{40}$$

Sendo n^0 a concentração no *bulk* da solução, z_i a valência do izésimo íon, \emptyset o potencial em relação a uma referência distante do eletrodo, \emptyset_t a tensão térmica. A densidade volumétrica de carga é dada por:

$$\rho = \sum_{i} z_{i} q n_{i} = \sum_{i} z_{i} q n^{0} e^{\frac{-z_{i} \phi}{\phi_{t}}}$$
(41)

Ao se utilizar a relação de Poisson-Boltzmann, e a condição de contorno na qual para uma distância muito grande do eletrodo $(x=\infty)$ tem-se $\emptyset = 0$ e $\partial \emptyset / \partial x = 0$, obtém-se:

$$\left(\frac{\partial\phi}{\partial x}\right)^2 = \frac{2q\phi_t}{\varepsilon\varepsilon_0} \sum_i n^0 \left(e^{\frac{-z_i\phi}{\phi_t}} - 1\right) \tag{42}$$

Esta equação foi resolvida para o caso de um eletrólito simétrico (também conhecido por eletrólito z:z). Aplicando-se a Lei de Gauss, e considerando-se a queda de potencial total sobre a camada difusa $Ø_0$, a densidade de cargas por unidade de área na camada difusa é dada por (6):

$$\sigma_d = -\sqrt{8kTn^0\varepsilon_r\varepsilon_0}\sinh\left(\frac{z\phi_0}{2\phi_t}\right) \tag{43}$$

Pode-se expressar em termos da concentração do eletrólito C^* (mol/m³) através da relação $n^0 = NaC^*$, sendo Na a constante de Avogrado (6.02^*10^{23} mol⁻¹). Desta expressão, pode-se calcular a capacitância diferencial nesta camada (C'_G), dada por:

$$C'_{G} = -\frac{\partial \sigma_{d}}{\partial \phi_{0}} = \sqrt{\frac{2z^{2}q^{2}\varepsilon_{r}\varepsilon_{0}n^{0}}{kT}} \cosh\left(\frac{z\phi_{0}}{2\phi_{t}}\right)$$
(44)

Da expressão $\partial \emptyset / \partial x$ é possível obter o perfil de potencial em relação a distância ao eletrodo (considerando ${}^{Z\emptyset}/{}_{2\emptyset_t} < 0.5$):

$$\phi = \phi_0 e^{-\sqrt{\frac{2n^0 z^2 q}{\varepsilon_r \varepsilon_0 \phi_t}}x} = \phi_0 e^{-\kappa x}$$
(45)

Sendo κ denominado *Debye parameter* (m⁻¹) e κ^1 , *Debye length* (em m). Esta variável também pode ser escrita em termos da concentração *C** (em mol/L), lembrando a relação $n^0 = NaC^*$ e que 1 mol/L equivale a 10³ mol/m³.

<u>A modificação de Stern:</u>

Nem o modelo de Helmholtz nem o de Gouy-Chapman são suficientes para explicar a estrutura do *double-layer*: o primeiro modelo superestima a rigidez do meio e o segundo, a subestima [44]. Estas duas teorias são combinadas no modelo de Stern, no qual os íons próximos ao eletrodo são considerados estando em uma camada de Helmholtz e os mais distantes em uma camada descrita pelo modelo de Gouy-Chapman como ilustra a Figura 35.

Figura 35 - Perfil de cargas e de potencial no modelo de Gouy-Chapman-Stern.

Fonte: [44].

Neste modelo, considera-se o OHP estando a uma distância x_2 do eletrodo (onde se encontra um potencial \emptyset_2). Deste ponto em diante, está uma camada descrita pelo modelo de Gouy-Chapman.

Considerando ${}^{Z\emptyset}/_{2\emptyset_t} < 0.5$, o perfil de potencial para $x > x_2$ é dado por (9):

$$\phi = \phi_2 e^{-\sqrt{\frac{2n^0 z^2 q}{\varepsilon_r \varepsilon_0 \phi_t} (x - x_2)}} = \phi_2 e^{-\kappa (x - x_2)}$$
(46)

E σ_d é dado por:

$$\sigma_d = -\varepsilon_r \varepsilon_0 \frac{\partial \phi}{\partial x_{x=x2}} = \sqrt{8kTn^0 \varepsilon_r \varepsilon_0} \sinh\left(\frac{z}{2\phi_t} \left(\phi_0 + \frac{\sigma_d}{\varepsilon_r \varepsilon_0} x_2\right)\right)$$
(47)

Desta expressão pode-se obter a capacitância diferencial:

$$\frac{1}{C_d} = \frac{x_2}{\varepsilon_r \varepsilon_0} + \frac{1}{\sqrt{\frac{2\varepsilon_r \varepsilon_0 z^2 q^2 n^0}{kT}} \cosh\left(\frac{zq\phi_2}{2kT}\right)} = \frac{1}{C'_H} + \frac{1}{C'_G}$$
(48)

APÊNDICE B – Preços e características de tecnologias HV

Na Tabela 5 estão preços de prototipação e características para algumas das tecnologias de alta tensão disponibilizadas por CEITEC, Chipus, MOSIS, Europractise, CMP e CMC.

	Foundry	Process			Packaging Price	HV Mosfet		
Supplier			Price	Samples		t _{ox} (nm)	V _{GSmax} (V)	V _{DSmax} (V)
CEITEC	XFAB	XC06	PMUB ⁽¹⁾	20	PMUB ⁽¹⁾	42	18	30
Chipus	SilTerra	D18V 180 nm	_(2)	40	_(2)	12.5	5.5	60
MOSIS	TSMC	CL018HV	\$40000 (area<25mm ²)	40	\$45/part (DIP40)	13	5	29
	ON Semiconductor	0.35µ I3T25	COT ⁽³⁾	40	\$45/part (DIP40)	30	12	18
	ON Semiconductor	ON Semi 0.50 µm CMOS (C5N)	MEP ⁽⁴⁾	40	MEP ⁽⁴⁾	13.5	5	20
	ON Semiconductor	ON Semi 0.50 µm CMOS (C5F)	\$6500 (area<4mm²)	40	\$45/part (DIP40)	29	15	20
	ON Semiconductor	0.7um I2T100	COT ⁽³⁾	40	\$45/part (DIP40)	42	12	95
	AMS	0.18u H18 HV	\$50000 (area<25mm ²)	40	\$45/part (DIP40)	50	20	50
	AMS	0.35u H35B4D3	\$9500 (area<1mm ²)	40	\$45/part (DIP40)	47	20	50

Tabela 5 - Preços e características de tecnologias HV.

0	1
0	4

	Foundry	Process		Samples	Packaging Price	HV Mosfet		
Supplier			Price			t _{ox} (nm)	V _{GSmax} (V)	V _{DSmax} (V)
Europractise	ON Semiconductor	ON Semi 0.7μ C07M-I2T100 100 V	(2M/3M) 525/560 €/mm ² (area>4mm ²)	>20	60€/part (DIL48) parts>10	42	12	95
	ON Semiconductor	ON Semi 0.35µ C035 – I3T25U 3.3/25 V	(3M/4M/5M) 750/770/800 €/mm ² (area>4mm ²)	>20	60€/part (DIL48) parts>10	30	12	18
	AMS	ams 0.35µ HV CMOS H35B4D3 120V 4M	880 €/mm ² (area>4mm ²)	40	60€/part (DIL48) parts>10	47	20	50
	AMS	ams 0.18µ HV CMOS aH18 50V/20V/5V/1.8V/ 6M/MIM	1150 €/mm ² (area>4mm ²)	40	60€/part (DIL48) parts>10	50	20	50
	X-FAB	X-FAB XH018 0.18µ HV NVM CMOS E-FLASH	4010 €/block (block=1520x1520µm²)	15	60€/part (DIL48) parts>10	40.6	18	50
	X-FAB	X-FAB XT018 0.18µ HV SOI CMOS	4100 €/block (block=1520x1520µm²)	15	60€/part (DIL48) parts>10	12	5.5	60
	TSMC	TSMC 0.18 CMOS High Voltage BCD Gen 2	5140 €/block (block=2500x2500μm²)	40	60€/part (DIL48) parts>10	13	5	29

	Foundry	Process			Packaging Price	HV Mosfet		
Supplier			Price	Samples		t _{ox} (nm)	V _{GSmax} (V)	V _{DSmax} (V)
СМР	STMicroeletronics	IC 130nm HCMOS9A	2500 €/mm ² (1.25 <area<5 mm<sup="">2)</area<5>	25	62.15€/part (DIL48) parts>5	8.5	4.6	20
	STMicroeletronics	IC 0.16µm BCD8s-SOI	2800 €/mm ² (1.25 <area<5 mm<sup="">2)</area<5>	25	62.15€/part (DIL48) parts>5	7	3.3	200
	STMicroeletronics	IC 0.16µm BCD8sP	2800 €/mm ² (1.25 <area<5 mm<sup="">2)</area<5>	25	62.15€/part (DIL48) parts>5	13	5	65
	AMS	IC 0.18µm aH18A6	1200 €/mm² (5.55 <area<10 mm²)<="" td=""><td>25</td><td>62.15€/part (DIL48) parts>5</td><td>12</td><td>5.5</td><td>50</td></area<10>	25	62.15€/part (DIL48) parts>5	12	5.5	50
	AMS	IC 0.35µm H35B4D3	850 €/mm² (7.65 <area<10 mm²)<="" td=""><td>25</td><td>62.15€/part (DIL48) parts>5</td><td>47</td><td>20</td><td>50</td></area<10>	25	62.15€/part (DIL48) parts>5	47	20	50
СМС	AMS	AMS 0.35 μm CMOS - High Voltage (through CMP): AMSP35	(Peer Rev./Academic) 225/1500 \$/mm ²	25	\$200 (5 parts)	47	20	50

Fonte: Elaborada pelo autor.

Nesta tabela, considerou-se somente os transistores de óxido espesso das tecnologias apresentadas.

⁽¹⁾PMUB (Programa Multiusuário Brasileiro): fabricação gratuita para instituições credenciadas (pausado por questões econômica em 2018).

⁽²⁾Esta tecnologia foi disponibilizada pela empresa Chipus Microeletrônica S.A. em uma parceria.

⁽³⁾COT: preço a ser negociado agendando rodada dedicada.

⁽⁴⁾MEP (*MOSIS Educational Program*): fabricação gratuita para instituições de ensino credenciadas.

APÊNDICE C – Detalhes do chip projetado

Na Figura 36 estão indicada as dimensões (em um) e identificados os ISFETs, MOSFETs e *pads* do *chip* fabricado.

Fonte: Elaborada pelo autor.

A conectividade dos pads estão na Tabela 6.

PAD	Descrição	PAD	Descrição
01	Dreno do nISFET N ₀₅	21	Dreno do pISFET P14
02	Dreno do nISFET N ₀₆	22	Dreno do pISFET P ₁₃
03	Dreno do nISFET N ₀₇	23	Dreno do pISFET P12
04	Dreno do nISFET N ₀₈	24	Dreno do pISFET P ₁₁
05	Dreno do nISFET N ₀₉	25	Dreno do pISFET P10
06	Dreno do nISFET N ₁₀	26	Dreno do pISFET P09
07	Dreno do nISFET N ₁₁	27	Dreno do pISFET P ₀₈
08	Dreno do nISFET N ₁₂	28	Dreno do pISFET P07
09	Dreno do nISFET N ₁₃	29	Dreno do pISFET P ₀₆
10	Dreno do nISFET N ₁₄	30	Dreno do pISFET P05
11	Dreno do nISFET N ₁₅	31	Dreno do pISFET P04
12	Dreno do nMOS N _{ref}	32	Dreno do pISFET P ₀₃
13	Porta do nMOS N _{ref}	33	Dreno do pISFET P02
14	Fonte do nMOS N _{ref}	34	Dreno do pISFET P01
15	Corpo dos nISFETs e do nMOS	35	Fonte dos pISFETs
16	Corpo dos pISFETs e do pMOS	36	Fonte dos nISFETs
17	Fonte do pMOS P _{ref}	37	Dreno do nISFET N ₀₁
18	Porta do pMOS Pref	38	Dreno do nISFET N ₀₂
19	Dreno do pMOS Pref	39	Dreno do nISFET N ₀₃
20	Dreno do pISFET P ₁₅	40	Dreno do nISFET N ₀₄

Tabela 6 - Conectividade dos pads do chip.

Fonte: Elaborada pelo autor.

APÊNDICE D – Algoritmo Matlab do macro modelo

ISFET de acordo com o pH. % Technology: SilTerra 180nm D18V close all clear all %format short e %% Constantes: global g T e0 er z k n0 xh ka kb kn Nsil Nnit phit Hb q = 1.6e-19; %eletronic charge [C] Tc = 25; %temperature [°C] T = Tc + 273; %[K]e0 = 8.85e-12; %vacum permissivity [F/m] er = 78.49; % pg 548 BARD, 2001 z = 1;% z:z electrolyte (NaCl: z=1) k = 1.38e-23; % Boltzmann cte [J/K] C = 0.1; %z:z electrolyte ion concentration [mol/L] (Massobrio, 2000) C m= 1e3*C; %electrolyte concentration [mol/m3] NA = 6.02e23; %Avogadro's number n0 = NA*C m; %concentração de ions na solução número/m3 tabela 13.3.1 (BARD, 2001) xh = 5e-10; %helmholtz outter plane distance from electrode [m] ka=15.8; %positive dissociation constant [mol/L] Massobrio 1992 kb=63.1e-9; %negative dissociation constant [mol/L] kn=1e-10; %dissociation constant for amine sites [mol/L] Nsil=3e18; %silanol or oxide surface site density [m-2] Nnit=2e18; %amine surface site density [m-2] Eagcl=0.19; % potential of the ref. electrode (Ag/AgCl) relative to the hydrogen electrode [V] Eref = 4.44 + Eagcl; %[V] phit=k*T/q; %thermal voltage [V] xsol=3e-3; % electrolyte-insulator surface dipole potential, [V] (Massobrio, 2000) (Bousse 1982 é 0.03??) wf m=4.7; % work function of the metal gate relative to vacuum. [V] (Massobrio, 2000) phijl = 1e-3; %liquid-junction potential difference between the ref. solution and the electrolyte [V] (Massobrio, 2000) %% phio es=12*e0; %surface relative permissivity ni=1e4; %[m-3] concentration of electron and holes in the intrinsic semiconductor (Silicon) N a=1e11; %[m-3] substrate doping (livro vermelho) p_0=N_a; %[m-3] equilibrium hole concentration n 0=ni^2/p 0; %equilibrium electron concentration phif=k*T/q*log(N a/ni) %fermi potential [V] (2:1:18) livro vermelho

% Rodrigo Wrege 2018/1

% Calcula potenciais e correntes no

phis=phit; %????? phis=2*phif para strong inversion (FUNG, A Generalized Theory of an Electrolyte-Insulator..., 1986) us=phis/phit; % sigma mos = us/abs(us)*sqrt(2*q*phit*es)*sqrt(p_0*(e xp(-us) + us -1) + n 0*(exp(us)-us -1));%2.3.10 livro amarelo Hb=1e-1; % proton concentration in the bulk electrolyte; (Massobrio, 2000) % Calculando phio: initial guess = [0.1; 0.1]; options = optimset('TolFun', 1e-14, 'TolX', 1e-14); %Default: TolFun=1e-6; TolX=le-6: for 1=1:19 % de pH 1 a 10 solution = fsolve(@V pH phio phih, initial guess, options); phih(1) = solution(1); phio(1) = solution(2); pH(l)=-log10(Hb) hb(1) = Hb;Hb=Hb/(10^0.5); end %Gouy-Champan-Stern: Ch = er*e0/xh; %Helmholtz capacitancie in xh [F/m2] Cqouy = sqrt(2*er*e0*z^2*q^2*n0/(k*T)).*cosh(z*q *phih/(2*k*T)); % Gouy-Chapman capacitance [F/m2] (Massobrio, 2000): phi2<< Cgoy=sqrt(8*er*e0*k*T*n0)/(2*phit) Ceq = (1./Ch + 1./Cgouy).^-1; % Stern Capacitance [F/m2] %% Transistor and Top Metal dimensions (SilTerra D18V): W=9e-6; % transistor width [m] L=1.8e-6; % trnsistor length [m] Amos=W*L; % gate area [m^2] Apass=(80e-6)^2; % top metal area [m2] tox=12.5e-9; %oxide thickness [m] Cox=3.9*e0/tox; %oxide Capacitance per area [F/m2] tsin=500e-9; % Si3N4 thickness [m] tusg=900e-9; % USG thickness [m] Csin=7.5*e0*Apass/tsin; % Si3N4 capacitance [F] Cusg=4.2*e0*Apass/tusg; % USG capacitance [F] Cpass=Csin*Cusg/(Csin+Cusg); % Passivation capacitance [F] %% Vref e Divisor Capacitivo: Vref=0:0.1:5; % reference electrode voltage [V] sign us=us/abs(us); %us signal Cd=sqrt(2*q*es*NA)*(1 - exp(us))/(2*sign us*sqrt(phis + phit*(exp(us) - 1))); 🖁 depletion capacitance[F/m2] (2.1.26) livro vermelho Cox d=Cox*Cd/(Cox+Cd)*Amos; %[F] Vg=Vref*Cpass/(Cpass+Cox d); % gate voltage [V]

%% ACM (SilTerra D18V): Is=306e-9; %specific current N [A] n=1.61; %slope factor N Vsb=0; %source voltage [V] Vt nmos = 0.747; %NMOS threshold voltage [V] i f guess=1e-6; i r quess=i f quess; % nISFET response: %nISFET Threshold Voltage: Vt_isf= Vt_nmos + Eref + phijl + xsol phio - wf m % (Massobrio, 1990) e (Georgious, 2009) Vdb = 1;% ISFET drain voltage [V] (=Vg(l) para saturado) %ACM (IdxVref): for j=1:length(Vt isf) for l=1:length(Vg) $[i_f(l,j) i_r(l,j)] = V_pH_acm (n,$ k, T, q, Vsb, Vdb, Vg(l), Vt_isf(j), i_f_guess, i_r_guess); end end Id=Is.*(i f - i r); %ACM (IdxVd): Vdb var = 0:0.01:2.5; %[V] $Vref_2 = 1;$ % reference electrode voltage [V] Vg 2 = Vref 2*Cpass/(Cpass+Cox d); % gate voltage [V] for j=1:length(Vt isf) for l=1:length(Vdb var) $[i_f_D(l,j) i_r_D(l,j)] = V_pH_acm ($ n, k, T, q, Vsb, Vdb_var(l), Vg_2, Vt_isf(j), i_f_guess, i_r_guess); end end Id D=Is.*(i f D - i r D); %% Sensibilidade: %Em Id valor: Id valor=1e-3; [m1 posicao1] = min(abs(Id(:,1)-Id valor)); %pH1 [m2 posicao2] = min(abs(Id(:,10)-Id valor)); %pH10 %sensitivity mV pH = 1e3* (Vref (posicao2) -Vref(posicao1))/(pH(10)-pH(1)) %[mV/pH] %por IdxVref %Em Vt: dVt dpH = diff(Vt isf)./diff(pH); %sensibilidade simulada Vt sensitivity mean mV pH = 1e3*mean(dVt dpH) %[mV/pH] Média de pH 1 a 10 %Vt sensitivity mV pH = 1e3*(Vt(8)-Vt(4))/(pH(8)-pH(4)) %[mV/pH] 2 ptos %Sensitivity (VAN HAL et al., 1995): %hb = hb(1:length(hb)-1); Hs = hb.*exp(-phio./phit); Bint = 2.3.*Hs*Nsil.*(ka.*Hs.^2 + 4*ka*kb.*Hs + ka^2*kb)./(ka*kb + ka.*Hs + Hs.^2).^2; alpha = (2.3*k*T*Ceq./(q^2.*Bint) + $1).^{-1}$

alpha2 = Vt_sensitivity_mean_mV_pH*1e-3/(2.3*phit) for l=1:length(pH)-1 % para plotar dVt dpH _____pH med(l) = (pH(l)+pH(l+1))/2; and %% Resultados: figure(1) %phio and phih plot(pH, phio, 'b', 'LineWidth', 2); grid on; hold on; plot(pH, phih,'r','LineWidth',2); legend('\phi_eo','\phi_2') xlabel('pH'); ylabel('[V]'); figure(2) plot(pH, Vt isf, 'LineWidth',2); grid on; xlabel('pH'); ylabel('Vt [V]'); figure (12) %phio and Vt in the same graphic [hAx, hLine1, hLine2] = plotyy(pH, phio, pH, Vt_isf, 'plot', 'plot'); grid on; xlabel('pH'); ylabel(hAx(1), '\phi_eo [V]') % left yaxis ylabel(hAx(2),'Vt [V]') % right y-axis set(hLine1, 'LineStyle', '--', 'linewidth', 2); set(hLine2,'LineStyle','-', 'linewidth',2); legend ('\phi eo','Vt'); figure(3) plot(Vref, Id(:,1),'r','LineWidth',2); grid on; hold on; plot(Vref, Id(:,7),'g--','LineWidth',2); plot(Vref, Id(:,13), 'b-.','LineWidth',2); plot(Vref, Id(:,19), 'k:', 'LineWidth',2); legend(['pH=',num2str(pH(1))],['pH=',num 2str(pH(7))],['pH=',num2str(pH(13))],['p H=', num2str(pH(19))]); xlabel('V_ref [V]'); ylabel('I_D [A]'); title(['@V DS = ' num2str(Vdb) ' V']); figure(31) %(WU, 2015) (DUTTA, 2012) plot(Vdb var, Id D(:,1), 'r', 'LineWidth',2); grid on; hold on; plot(Vdb_var, Id_D(:,7),'g--','LineWidth',2); plot(Vdb_var, Id D(:,13), 'b-.','LineWidth',2); plot(Vdb var, Id_D(:,19),'k:','LineWidth',2); legend(['pH=',num2str(pH(1))],['pH=',num 2str(pH(7))],['pH=',num2str(pH(13))],['p H=', num2str(pH(19))]); xlabel('V_DS [V]'); ylabel('I_D [A]'); title(['@V ref = ' num2str(Vref 2) ' V']); figure(4)

plot(pH_med, 1e3*dVt_dpH,'r'); grid on; % pH average sensitivity obtained calculating the shifts in Vth (ISFET) from the SPICE outputs for different pH values (Massobrio, 1992)

```
ylabel('Vt Sensitivity [mV/pH]');
xlabel('pH');
```

figure(5)
plot(pH, alpha); grid on;
xlabel('pH'); ylabel('\alpha');

figure(6)
plot(pH_med, le3*dVt_dpH, 'b-','LineWidth',2); grid on; hold on;
plot(pH, 2.3*phit.*alpha*le3, 'g','LineWidth',2);
xlabel('pH');
ylabel('Sensibilidade [mV/pH]')
legend('dVt/dpH ','2.3\phi_t\alpha');
xlim([2 9]);

figure(7) %(VAN HAL et al., 1995)
plot(pH, Bint); grid on;
xlabel('pH'); ylabel('\beta_int
[grupos/m^2]');

figure(8) %(VAN HAL et al., 1995)
plot(pH, -log10(Hs)); grid on;
xlabel('pHb'); ylabel('pHs');

figure(9) %GCS capacitances
plot(pH, Ceq,r','LineWidth',2); grid
on; hold on
plot(pH, Ch*ones(1, length(pH)),'g-','LineWidth',2); hold on
plot(pH, Cgouy,'b-.','LineWidth',2);
legend ('C_eq','C_H','C_G');
xlabel('pHb'); ylabel('Capacitancia por
area (F/m^2)';

Função V pH acm:

function [i_f i_r] = V_pH_acm (n, k, T, q, Vsb, Vdb, Vg, Vt, i_f_guess, i_r_guess) % Calcula níveis de inversão if e ir do modelo ACM.

options = optimset('TolFun', 1e-10,
'TolX', 1e-10); %Default: TolFun=1e-6;
TolX=1e-6;

fun_acm=@(i_f) (Vg-Vt)/n - Vsb k*T/q*(sqrt(1+i_f) - 2 +
log(sqrt(1+i_f)-1)); % eq. 2:2:7 livro
vermelho
i_f = fsolve(fun_acm, i_f_guess,
options);

fun_acm_ir=@(i_r) (Vg-Vt)/n - Vdb k*T/q*(sqrt(1+i_r) - 2 +
log(sqrt(1+i_r)-1)); % eq. 2:2:7 livro
vermelho
i_r = fsolve(fun_acm_ir, i_r_guess,
options);

end

Função V pH phio phih:

function F = V_pH_phio_phih (x) %phih =
x(1), phio = x(2)
%Calcula phih e phio.
global q T e0 er z k n0 xh ka kb kn Nsil
Nnit ohit Hb

Ch = er*e0/xh; %Helmholtz capacitancie in xh [F/m2] Cgouy = sqrt(2*er*e0*z^2*q^2*n0/(k*T)).*cosh(z*q *x(1)/(2*k*T)); % Gouy-Chapman capacitance [F/m2] Ceq = (1/Ch + 1/Cgouy).^-1; % Stern Capacitance [F/m2]

sigma_d = sqrt(8*k*T*er*e0*n0).*sinh(z*q*x(1)/(2*k
*T));% sigma_o=-sigmadl diffuse layer
charge density [C/m2] eq 28 Bergveld
2003

Hs = Hb*exp(-x(2)/phit); %Hs is the concentration of the protons at the insulator surface/Hb is in the bulk electrolyte; (Massobrio, 1991) sigma_o = (q*Nsil*((Hs)^2 ka*kb)/((Hs)^2 + ka*(Hs) + ka*kb) + q*Nnit*((Hs)/((Hs) + kn))); % charge density of surface sites (Martinoia, 1991)

F = [x(2) + sigma_d/Ch - x(1); % pois
phih = phio - sigma_o(phih)/CH; eq 29
Bergveld 2003
 x(2) - sigma_o/Ceq]; %(Massobrio,
1992)
end