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1 | INTRODUCTION 

The classical CMOS ST shown in Figure 1 is one of the most basic building blocks for electronic circuits. It can be used for 

applications such as noise reduction, pulse-width preserving, pulse stretching, conversion of continuous wave to square wave and 

relaxation oscillators [1]. The classical CMOS ST was patented in 1975 [2], but accurate approximations for the ST high and low 

threshold voltages for all ratios of feedback are still lacking, which is not the case for ST circuits based on either bipolar transistors 

or operational amplifiers [3] . 

Several authors [4]-[7] presented expressions for calculating the threshold voltages of the CMOS ST decades ago. Although the 

expressions for the threshold voltages appear to be good approximations for strong positive feedback (wide hysteresis window), 

they totally fail for weak feedback (narrow hysteresis window). As pointed out in [8], sometimes it is important to include a narrow 

hysteresis window to a comparator in order to avoid inappropriate output changes of the comparator due to interference signals of 

very-high frequency. Another important application of comparators of narrow hysteresis is that of ripple-based control of DC-DC 

converters [9], [10]. 

Due to the lack of a good model to determine the hysteresis window, several designers have either resorted to intensive 

simulation [10], [11] to find out the appropriate size of the ST transistors or proposed ST architectures [12], [13] that are amenable 

to adjustment. In fact, designers of integrated circuits still struggle to place correctly the thresholds of the CMOS ST, in spite of 

its use in present-day applications [14].  On the other hand, recent work [15]-[18] on the ST has been focused on the weak inversion 

region, but there is only one study [18] that provides equations developed for the forward and reverse threshold voltages. 

In this paper, we revisit the equations of the classical CMOS Schmitt trigger in strong inversion. The main motivation for this 

study was to provide the readers with approximations that are good enough to determine the transistor parameters (current scaling 

factors) for the intended hysteresis width, independent of its size.  

Regarding the organization of this paper, Section 2 revisits the usual model of the classical CMOS ST circuit and points out 

some shortcomings of the existing expressions for calculating the hysteresis threshold voltages. A more general analysis for 

determining the ST threshold voltages follows in Section 3, where the voltage transfer characteristic of the ST, for both rising and 

falling inputs, is described. Asymptotic values of the hysteresis window for both strong and weak feedback are given. Section 4 

recalls an accurate strong inversion model of the MOS transistor and develops accurate expressions for the high and low threshold 

voltages of the ST inverter. Finally, Section 5 reports experimental and simulation results for different feedback strengths. 
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Summary 

The classical CMOS Schmitt trigger (ST) circuit operating in strong 

inversion has been used as a basic building block in electronics since 

the seventies. However, no appropriate analytical models for 

determining the hysteresis threshold voltages have been presented. In 

this paper, we review the classical CMOS ST formulation for operation 

in strong inversion and introduce a new model for calculating the 

hysteresis window. In order to validate the approximations employed in 

this work, we measured the hysteresis curve for several combinations of 

transistors available in the popular off-the-shelf CD4007 and resorted to 

simulation in a 180 nm technology for the specific purpose of 

measuring the ST window in terms of the transistors aspect ratios. 

Numerical, experimental and simulation results corroborate the 

approximations employed in this research to derive simple expressions 

for the hysteresis threshold voltages. 
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Figure 1: Classical CMOS Schmitt-trigger circuit [1]. 

2 | REVISITING THE CLASSICAL MODELS OF THE ST IN STRONG INVERSION 

For a first order analysis of the ST we use the simplest model of the MOS transistor [19], [20] in strong inversion, given by  

𝐼𝐷𝑁𝑖 = 𝛽𝑁𝑖[(𝑉𝐺 − 𝑉𝑇𝑁 − 𝑉𝑆)2 − (𝑉𝐺 − 𝑉𝑇𝑁 − 𝑉𝐷)2]                 (1a) 

and 

𝐼𝐷𝑃𝑖 = 𝛽𝑃𝑖[(−𝑉𝐺 + 𝑉𝑇𝑃 + 𝑉𝑆)2 − (−𝑉𝐺 + 𝑉𝑇𝑃 + 𝑉𝐷)2]                (1b) 

where, VS, VD, and VG are the source, drain, and gate voltages, respectively. VTN > 0 and VTP < 0 are the threshold voltages of the 

n- and p-channel transistors, respectively. It is of paramount importance to base the analysis of the CMOS Schmitt trigger on a 

MOSFET model such as that of equations (1a) and (1b), which preserves the symmetry between source and drain. Indeed, the 

symmetry property is essential for the correct simulation of the series association of MOS transistors [21]. 

In the simplified analysis that follows, for the sake of simplicity we have assumed that the transistor strengths, or 

transconductance parameters, given by 

 𝛽𝑁𝑖 =
𝜇𝑁𝐶𝑜𝑥

2
(

𝑊

𝐿
)

𝑁𝑖
        𝛽𝑃𝑖 =

𝜇𝑃𝐶𝑜𝑥

2
(

𝑊

𝐿
)

𝑃𝑖
                 (1c) 

are the same for the P and N networks, i.e., N0=P0=0, N1=P1=1, and N2=P2=2. 

The symbols in (1c) have their usual meanings [8].  

In order to get an insight into the first order behavior of the ST circuit, we initially resorted to numerical calculations of equations 

(1a) – (1b), along with the Kirchhoff current law for each node. By proceeding in this way, we were able to have full control of 

the equation parameters and check the validity of the approximations that we have used for developing an analytical model. Also, 

the information about the number of iterations, the region of operation of each transistor and the plots of the drain currents of 

transistors N1 and P1 led to important conclusions about the circuit behavior. 

The numerical simulation of the effect of the feedback strength in the ST circuit can be seen in Figure 2, which shows the cases 

of strong, moderate, weak, and no (standard CMOS inverter) feedback. For the numerical calculation the input voltage was swept 

from 0 V to VDD= 1 V in steps of 1 mV (or even less in some cases). For each new value of the input voltage, the initial condition 

for the output voltage VO is its value found in the previous step. The same procedure was applied to descending values of the input 

voltage, from VDD to 0 V. 

 
Figure 2: Voltage transfer curves (VTCs) of the standard inverter (2/0 =0) and STs with weak feedback (2/0=1/5), moderate feedback (2/0 =1) 

and strong feedback (2/0 =5), for 0 = 1, VTN=|VTP|= 0.2 V, VDD=1 V. 
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The case of a wide hysteresis loop is appropriately modeled [5]-[7] by 

𝑉𝑖𝐻 =
𝑉𝑇𝑁+𝑉𝐷𝐷√

𝛽2
𝛽0

1+√
𝛽2
𝛽0

                                       (2a) 

 𝑉𝑖𝐿 =
𝑉𝑇𝑃+𝑉𝐷𝐷

1+√
𝛽2
𝛽0

                                      (2b) 

𝑉𝑖𝑊 = 𝑉𝑖𝐻 − 𝑉𝑖𝐿                                    (2c) 

ViH and ViL are the high and low threshold voltages of the Schmitt trigger, respectively, and Viw is the hysteresis window. The 

meaning of wide hysteresis loop, which is not clear in the technical literature, will be clarified in Section 3. 

It is easy to show that equations (2a)-(2c) are meaningless in the case of small feedback ratios. In fact, for very weak feedback, 

2/0 <<1, the formulas in (2) reduce to ViH=VTN<VDD+VTP=ViL. In order to avoid ViH to be less than ViL, we must have, from 

equations (2) 
𝛽2

𝛽0
> (

𝑉𝐸𝐹𝐹

𝑉𝐷𝐷
)

2

                                                              (2d) 

𝑉𝐸𝐹𝐹 = 𝑉𝐷𝐷 − 𝑉𝑇𝑁 + 𝑉𝑇𝑃                                                     (2e) 

Here, VEFF is the effective supply voltage. As we shall see, this is an important parameter for the characterization of the Schmitt 

trigger. Thus, the use of equations (2a) and (2b) for moderate and weak feedback factors 2/0 can lead to a negative hysteresis 

width or, equivalently, an anticlockwise hysteresis inverter. 

A general formula for the calculation of the hysteresis window ViW. was proposed in [4]. For the case of P and N networks with 

equal transconductance parameters, and with 0=1, equation (16) of reference [4] is written as 

𝑉𝑖𝑊 =
𝑉𝐷𝐷+

𝑉𝑇𝑃−𝑉𝑇𝑁
2

1+√
𝛽0
𝛽2

                       (3) 

In order to check whether the approximations of references [4] - [6] for the hysteresis width are appropriate, Figure 3 shows 

plots of the approximations together with a numerical simulation that employs the transistor equations (1a) – (1b). 

 
Figure 3: Hysteresis width versus feedback ratio 2/0 of the ST in Figure 1 for VTN=|VTP|= 0.2 V, VDD=1 V, and 0=1. 

For the data of Figure 3, VEFF= 0.6 V; thus, the hysteresis width given by equations (2a) - (2c) becomes equal to zero for a 

feedback ratio 2/0= (VEFF/VDD)2 =0.36. This is the reason for truncating the curve corresponding to equations (2a) - (2c) for values 

of feedback ratio less than 0.36. On the other hand, as will be demonstrated in Section 3, those equations are exact for 2/0> 

(VEFF/VTP)2, i.e. 2/0>9 in the case of Figure 3. The coincidence of the numerical results with equations (2a) - (2c) is quite clear 

for 2/0>9. Finally, equation (3) (equation (16) of [4]) is not an adequate approximation, since it gives very poor results for the 

case of weak feedback factors (2/0<1). 

The next section is devoted to a simplified analysis of the ST. 

3 | DC TRANSFER CHARACTERISTIC OF THE SCHMITT TRIGGER 

For the ongoing analysis, the voltage transfer characteristic (VTC) is divided into regions according to the conducting state of 

the transistors, as shown in Figure 4. Regions I, II, IV, and V are valid for both rising and falling input voltages. Regions III and 

VI are associated with a rising and a falling input, respectively. 
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Figure 4: VTC of the ST in Figure 1 for VTN=|VTP|= 0.2 V, VDD=1 V, and 0=1=52. 

In region I neither of the n-channel transistors conducts. In region II, both N0 and N2 conduct, whereas N1 is off. Finally, in 

region III the three n-channel transistors conduct. Figure 5 shows the states of the transistors of the N-network for regions I, II, and 

III. Regions IV, V, and VI, defined according to the conduction state of the PMOS transistors, are analogous to regions I, II and 

III, respectively. 

 

Figure 5: Left to right: State of the transistors of the N-network for increasing input voltage, for regions I, II, and III, respectively. C, S, and T stand for 

cutoff, saturation, and triode regions, respectively. 

The description of regions I to VI of the graph in Figure 4 is given by the following conditions. 

(a) Rising input VI : 0 → VDD  

Region I: 0 < 𝑉𝐼 < 𝑉𝑇𝑁: N0, N1, and P2 - cutoff, P0 and P1 - triode, N2 - verge of conduction. 

The calculation of VX is shown below. 

𝐼𝐷𝑁2 = 𝛽2(𝑉𝐷𝐷 − 𝑉𝑇𝑁 − 𝑉𝑋)2 = 0  ⇒    
   𝑉𝑋 = 𝑉𝐷𝐷 − 𝑉𝑇𝑁;      𝑉𝑂 = 𝑉𝐷𝐷                 (4) 

Region II: N1 and P2 - cutoff, P0 and P1 - triode, N0 and N2 - saturation. 

The value of VX in Region II is found as follows: 

𝐼𝐷𝑁2 = 𝐼𝐷𝑁0 ⇒  𝛽2(𝑉𝐷𝐷 − 𝑉𝑇𝑁 − 𝑉𝑋)2 = 𝛽0(𝑉𝐼 − 𝑉𝑇𝑁)2 ⇒ 

𝑉𝑋 = 𝑉𝐷𝐷 − 𝑉𝑇𝑁 − √
𝛽0

𝛽2
(𝑉𝐼 − 𝑉𝑇𝑁);     𝑉𝑂 = 𝑉𝐷𝐷             (5) 

Thus, the cutoff of transistor N1 implies that (𝑉𝐼 − 𝑉𝑇𝑁) < 𝑉𝑋
 or, equivalently,  

𝑉𝐼 <
𝑉𝑇𝑁+𝑉𝐷𝐷√

𝛽2
𝛽0

1+√
𝛽2
𝛽0

                     (6) 

Region III:
(𝑉𝑇𝑁+𝑉𝐷𝐷√

𝛽2
𝛽0

)

1+√
𝛽2
𝛽0

≤ 𝑉𝐼 ≤ 𝑉𝑖𝐻: N0 - triode, N1 and N2 - saturation, P2 - cutoff, P0 and P1 – triode. 
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Before describing the equations of the ST for region III, we first determine the condition under which the high threshold voltage 

ViH occurs in region II, i.e. the width of region III tends towards zero or, equivalently, VOH tends towards VDD. This limit condition 

can be readily found out by noting that, when VOH tends towards VDD, transistors P1 and N1 never conduct simultaneously, i.e.  

𝑉𝑖𝐻 = 𝑉𝐷𝐷 + 𝑉𝑇𝑃 

Equating the higher and lower limits of region III we find that 

(𝑉𝑇𝑁+𝑉𝐷𝐷√
𝛽2
𝛽0

|
𝑙𝑖𝑚

)

1+√
𝛽2
𝛽0

|
𝑙𝑖𝑚

= 𝑉𝐷𝐷 + 𝑉𝑇𝑃 →
𝛽2

𝛽0
|

𝑙𝑖𝑚
= (

𝑉𝐸𝐹𝐹

𝑉𝑇𝑃
)

2

              (7) 

Thus, the classical equations (2a) - (2b) are exact only for  

𝛽2

𝛽0

> (
𝑉𝐸𝐹𝐹

𝑉𝑇𝑃

)
2

  

In other words, the circuit will show a wide hysteresis loop if the inequality above holds, whereas 2/0<1 is characteristic of a 

narrow hysteresis loop. In Section 4 we describe how ViH can be accurately determined for the case in which the feedback factor 

is less than the limit given above.  

For weak feedback, we can obtain very directly the main results of Section 4 by taking advantage of the closeness between the 

VTC of the ST and that of the inverter. In order to simplify the equations, we start with the case for which VTN<<VDD and 

|VTP|<<VDD. Thus, we will determine ViH under the hypothesis VI=ViH=VO. 

Once again, we will assume that the NMOS and PMOS networks have the same transconductance parameters. The KCL for 

node VX in Figure 1, with VI equal to the high threshold voltage, is  

𝛽0[(𝑉𝑖𝐻 − 𝑉𝑇𝑁)2 − (𝑉𝑖𝐻 − 𝑉𝑇𝑁 − 𝑉𝑋)2] = 𝛽1(𝑉𝑖𝐻 − 𝑉𝑇𝑁 − 𝑉𝑋)2 + 𝛽2(𝑉𝑖𝐻 − 𝑉𝑇𝑁 − 𝑉𝑋)2       (8) 

Thus,  

(𝑉𝑖𝐻 − 𝑉𝑇𝑁 − 𝑉𝑋)2 =
(𝑉𝑖𝐻−𝑉𝑇𝑁)2

1+
𝛽1+𝛽2

𝛽0

                    (9) 

If 2/0 <<1 the P network is approximately equivalent to the series association of P0 and P1 [21]; thus, the DC equation of the 

output node is  

𝐼𝐷𝑁1 =
𝛽1(𝑉𝑖𝐻−𝑉𝑇𝑁)2

1+
𝛽1+𝛽2

𝛽0

= 𝐼𝐷𝑃1 ≅
𝛽1𝛽0

𝛽0+𝛽1
(𝑉𝐷𝐷 − 𝑉𝑖𝐻 + 𝑉𝑇𝑃)2             (10) 

From (10) we deduce the value of the high threshold voltage of the ST circuit as 

𝑉𝑖𝐻 = 𝑉𝑇𝑁 +
𝑉𝐸𝐹𝐹

1+√
𝛽0+𝛽1

𝛽0+𝛽1+𝛽2

                    (11) 

Since 2/0 <<1, a first-order approximation of the square root in the denominator of (11) leads to 

𝑉𝑖𝐻 =
𝑉𝐷𝐷+𝑉𝑇𝑁+𝑉𝑇𝑃

2
+

1

8

𝛽2

𝛽0+𝛽1
𝑉𝐸𝐹𝐹                    (12) 

where the first term in (12) is the inverter threshold voltage.  

(b) Falling input VI : VDD → 0 

For a descending input voltage, an analogous analysis gives 

𝑉𝑖𝐿 =
𝑉𝐷𝐷+𝑉𝑇𝑁+𝑉𝑇𝑃

2
−

1

8

𝛽2

𝛽0+𝛽1
𝑉𝐸𝐹𝐹                    (13) 

Thus, a rough approximation of the hysteresis width for weak feedback is 

𝑉𝑖𝑊 = 𝑉𝑖𝐻 − 𝑉𝑖𝐿 =
1

4

𝛽2

𝛽0+𝛽1
𝑉𝐸𝐹𝐹                    (14) 

The accurate approximation of ViW, demonstrated in the Section 4 for VTN=-VTP and slope factors nN=nP=1, is 

𝑉𝑖𝑊 = 𝑉𝑖𝐻 − 𝑉𝑖𝐿 =
𝛽2

4𝛽0
(√

𝛽0

𝛽0+𝛽1
+ 2

𝑉𝑇𝑁

𝑉𝐸𝐹𝐹
)

2

𝑉𝐸𝐹𝐹               (15) 

which also gives a linear dependence of the hysteresis width on the current strength 2. Figure 6 presents a plot of equation (15) 

together with numerical simulations using equations (1a) and (1b). Note that equation (15) provides a very good approximation of 

the hysteresis widths for2/0<1. 
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Figure 6: Hysteresis width versus feedback ratio 2/0 of the ST in Figure 1 for VTN=|VTP|= 0.2 V, VDD=1 V, and 0=1. 

A comment is now in order. When narrow hysteresis comparators are needed, the classical expressions of equations (2a) and 

(2b) in this paper fail to help designers. Note that the feedback strength is dependent not only on the ’s ratio, but also on the ratio 

of the MOSFET threshold voltages to the effective supply voltage VEFF. 

Before going to experimental and simulation results, the next section shows a more accurate and detailed analysis for 

determining the high and low threshold voltages of the Schmitt trigger. 

4 | EQUATIONS FOR THE DETERMINATION OF THE HIGH AND LOW THRESHOLD 

VOLTAGES VIH AND VIL 

The I-V equations for strong inversion operation of the NMOS and PMOS transistors shown in Figure 7, can be written as in 

equations (16) and (17), and Table 1, where 𝑠 and 𝑑 are binary values defined in the first column of Table 1. 

 
Figure 7: Symbols for the terminals of the NMOS and PMOS transistors. 

𝐼𝐷𝑁= 𝛽𝑁𝑛𝑁  [𝑠 (
𝑉𝐺−𝑉𝑇𝑁

𝑛𝑁
− 𝑉𝑆)

2

− 𝑑 (
𝑉𝐺−𝑉𝑇𝑁

𝑛𝑁
− 𝑉𝐷)

2

]              (16) 

𝐼𝐷𝑃 = 𝛽𝑃𝑛𝑃  [𝑠 (
𝑉𝐷𝐷−𝑉𝐺+𝑉𝑇𝑃

𝑛𝑃
− (𝑉𝐷𝐷 − 𝑉𝑆))

2

− 𝑑 (
𝑉𝐷𝐷−𝑉𝐺+𝑉𝑇𝑃

𝑛𝑃
− (𝑉𝐷𝐷 − 𝑉𝐷))

2

]         (17) 

Table 1: Conditions under which the mos transistors operate in the regimes of cutoff, triode, or saturation. 

Region Source bias Drain bias 

 NMOS transistor 

Triode (s=d=1) 𝑉𝐺 − 𝑉𝑇𝑁 − 𝑛𝑁𝑉𝑆 > 0 𝑉𝐺 − 𝑉𝑇𝑁 − 𝑛𝑁𝑉𝐷 > 0 

Saturation (s=1, d=0) 𝑉𝐺 − 𝑉𝑇𝑁 − 𝑛𝑁𝑉𝑆 > 0 𝑉𝐺 − 𝑉𝑇𝑁 − 𝑛𝑁𝑉𝐷 ≤ 0 

Cutoff (s=d=0) 𝑉𝐺 − 𝑉𝑇𝑁 − 𝑛𝑁𝑉𝑆 ≤ 0 𝑉𝐺 − 𝑉𝑇𝑁 − 𝑛𝑁𝑉𝐷 ≤ 0 

 PMOS transistor 

Triode (s=d=1) 𝑉𝐷𝐷 − 𝑉𝐺 + 𝑉𝑇𝑃 − 𝑛𝑃(𝑉𝐷𝐷 − 𝑉𝑆) > 0 𝑉𝐷𝐷 − 𝑉𝐺 + 𝑉𝑇𝑃 − 𝑛𝑃(𝑉𝐷𝐷 − 𝑉𝐷) > 0 

Saturation (s=1, d=0) 𝑉𝐷𝐷 − 𝑉𝐺 + 𝑉𝑇𝑃 − 𝑛𝑃(𝑉𝐷𝐷 − 𝑉𝑆) > 0 𝑉𝐷𝐷 − 𝑉𝐺 + 𝑉𝑇𝑃 − 𝑛𝑃(𝑉𝐷𝐷 − 𝑉𝐷) ≤ 0 

Cutoff (s=d=0) 𝑉𝐷𝐷 − 𝑉𝐺 + 𝑉𝑇𝑃 − 𝑛𝑃(𝑉𝐷𝐷 − 𝑉𝑆) ≤ 0 𝑉𝐷𝐷 − 𝑉𝐺 + 𝑉𝑇𝑃 − 𝑛𝑃(𝑉𝐷𝐷 − 𝑉𝐷) ≤ 0 
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Now, let us make use of both Figure 1 and Figure 2 to explain how to determine the high and low threshold voltages of the 

Schmitt trigger. First, examining the circuit of Figure 1, the ST circuit reduces to the conventional CMOS inverter if transistors N2 

and P2 are removed, thus leading to the hysteresis-less curve in Figure 2. The value of VOH for the inverter is the output voltage on 

the edge of saturation of the PMOS transistor [22]. For high values of 2/0, Figure 2 shows that VOH tends towards VDD.  

In other words, the infinite gain of the standard inverter (2=0) is confined to the region VI-VTN<VO<VI-VTP. Thus, for the 

inverter, the maximum value (VOH) of VO at which the inverter is in the saturation region is VOH= VI-VTP. On the other hand, when 

the positive feedback provided by transistor N2 is very strong, i.e. 
𝛽2

𝛽0
> (

𝑉𝐸𝐹𝐹

𝑉𝑇𝑃
)

2

→  𝑉𝑂𝐻 = 𝑉𝐷𝐷  

In order to develop an analytical model, we have approximated the value of VOH as a weighted sum of VDD and the output voltage 

of the inverter on the edge of saturation of the PMOS transistor, as given below 

𝑉𝑂𝐻 =
𝛽2

𝛽0+𝛽2
𝑉𝐷𝐷 +

𝛽0

𝛽0+𝛽2
𝑉𝑆𝐷,𝑠𝑎𝑡𝑃                (18) 

where 

𝑉𝑆𝐷,𝑠𝑎𝑡𝑃 = 𝑉𝐷𝐷 −
𝑉𝐷𝐷+𝑉𝑇𝑃−𝑉𝑖𝐻

𝑛𝑃
                 (19) 

and ViH represents the upper threshold voltage. Combining (18) and (19) and denoting α=1/(1+β0/β2), we find that 

 

𝑉𝑂𝐻 = 𝑉𝐷𝐷 −
(1−𝛼)(𝑉𝐷𝐷+𝑉𝑇𝑃−𝑉𝑖𝐻)

𝑛𝑃
= 𝑉𝐷𝐷 −

(1−𝛼)𝐻

𝑛𝑃
               (20) 

where 𝐻 = 𝑉𝐷𝐷 + 𝑉𝑇𝑃 − 𝑉𝑖𝐻.  

For VI=ViH and VO=VOH the following conditions hold: N0 - triode, N1 and N2 - saturation, P2 - cutoff, P0 and P1 – triode.  

Equation (21) describes the current through the (equivalent) series association of transistors P1 and P2. Note that the currents 

through N1 and N2 in (22) are independent of the drain voltages. The application of KCL to node VX yields (23). 

Using the approximation of (20) for VOH and the equality IDN1=IDP1, after lengthy algebra, we find (24). This equation gives the 

high threshold voltage ViH.  

𝐼𝐷𝑃1 = 𝐼𝐷𝑃0 = 𝑛𝑃
𝛽0𝛽1

𝛽0+𝛽1
[(

𝑉𝐷𝐷−𝑉𝑖𝐻+𝑉𝑇𝑃

𝑛𝑃
)

2

− (
𝑉𝐷𝐷−𝑉𝑖𝐻+𝑉𝑇𝑃

𝑛𝑃
− (𝑉𝐷𝐷 − 𝑉𝑂𝐻))

2

]                            (21) 

𝐼𝐷𝑁0 = 𝑛𝑁𝛽0 [(
𝑉𝑖𝐻−𝑉𝑇𝑁

𝑛𝑁
)

2

− (
𝑉𝐼𝐻−𝑉𝑇𝑁

𝑛𝑁
− 𝑉𝑋)

2

] ; 𝐼𝐷𝑁1 = 𝑛𝑁𝛽1 (
𝑉𝑖𝐻−𝑉𝑇𝑁

𝑛𝑁
− 𝑉𝑋)

2

; 𝐼𝐷𝑁2 = 𝑛𝑁𝛽2 (
𝑉𝑂𝐻−𝑉𝑇𝑁

𝑛𝑁
− 𝑉𝑋)

2

     (22) 

𝐼𝐷𝑁0 = 𝐼𝐷𝑁1 + 𝐼𝐷𝑁2                                                                            (23) 

𝑛𝑁

𝑛𝑃
𝐻2[1 − 𝛼2] +

𝛽2

𝛽0
[𝐻 (1 + √

𝑛𝑁

𝑛𝑃

𝛽0

𝛽0+𝛽1
[1 − 𝛼2] −

(1−𝛼)

𝑛𝑃
) − 𝑉𝑇𝑃]

2

= (𝑉𝐸𝐹𝐹 − 𝐻)2      (24) 

The low threshold voltage ViL of the ST can be derived similarly to ViH. In order to save space, the equations and algebra that 

led to the result for ViL in (25) are not transcribed here.  

𝑛𝑃

𝑛𝑁
𝐿2[1 − 𝛼2] +

𝛽2

𝛽0
[𝐿 (1 + √

𝑛𝑃

𝑛𝑁

𝛽0

𝛽0+𝛽1
[1 − 𝛼2] −

(1−𝛼)

𝑛𝑁
) + 𝑉𝑇𝑁]

2

= (𝑉𝐸𝐹𝐹 − 𝐿)2     (25) 

where 𝐿 = 𝑉𝑖𝐿 − 𝑉𝑇𝑁. 

It is important to notice that applying a very strong feedback to (24) and (25), i.e. 𝛼 → 1, leads directly to equations (2a) - (2b), 

as already discussed in Section 2. To obtain more practical analytical equations for the weak feedback cases, further algebra is 

necessary.  

Now, for very weak feedback, i.e. 𝛼 → 0, (24) can be rewritten as 

𝑉𝑖𝐻 ≅
𝑉𝐷𝐷+𝑉𝑇𝑃+𝑉𝑇𝑁

2
+

𝑉𝐸𝐹𝐹

8

𝛽2

𝛽0
(𝑎 −

2𝑉𝑇𝑃

𝑉𝐸𝐹𝐹
)

2

                   (26) 

𝑉𝐸𝐹𝐹 = 𝑉𝐷𝐷 + 𝑉𝑇𝑃 − 𝑉𝑇𝑁 ;   𝑎 =
𝑛𝑁√

𝛽0
𝛽0+𝛽1

+𝑛𝑃−1

𝑛𝑃
  

while (25) as 

𝑉𝑖𝐿 ≅
𝑉𝐷𝐷+𝑉𝑇𝑃+𝑉𝑇𝑁 

2
−

𝑉𝐸𝐹𝐹

8

𝛽2

𝛽0
(𝑏 −

2𝑉𝑇𝑁

𝑉𝐸𝐹𝐹
)

2

               (27) 

𝑏 =
𝑛𝑃√

𝛽0
𝛽0+𝛽1

+𝑛𝑁−1

𝑛𝑁
  

Finally, the difference between (26) and (27) leads to, 
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𝑉𝑖𝑊 = 𝑉𝑖𝐻 − 𝑉𝑖𝐿 =
𝑉𝐸𝐹𝐹

4

𝛽2

𝛽0
[(𝑎 −

2𝑉𝑇𝑃

𝑉𝐸𝐹𝐹
)

2

− (𝑏 −
2𝑉𝑇𝑁

𝑉𝐸𝐹𝐹
)

2

]             (28) 

For 𝑛𝑁 = 𝑛𝑃 = 1 and 𝑉𝑇𝑁 = −𝑉𝑇𝑃, (27) can be further simplified to 

𝑉𝑖𝑊 = 𝑉𝑖𝐻 − 𝑉𝑖𝐿 = 𝑉𝐸𝐹𝐹
𝛽2

4𝛽0
(√

𝛽0

𝛽0+𝛽1
+ 2

𝑉𝑇𝑁

𝑉𝐸𝐹𝐹
)

2

                (29)

5 | EXPERIMENTAL AND SIMULATION RESULTS 

For the experimental validation of the results reported herein, samples of the popular CD4007, which contains 3 NMOS and 3 

PMOS transistors, were used. 

The transistor parameters, namely the threshold voltages and the specific currents, were extracted according to the gm/ID 

methodology described in Figure 4 of reference [23], while the values for the slope factors nN and nP were determined using the 

method described on pages 463-464 of reference [20]. Table 2 shows the parameters extracted for both types of transistors.  
Table 2: EXTRACTED PARAMETERS OF THE NMOS AND PMOS TRANSISTORS OF THE CD4007. 

NMOS PMOS 

VTN 1.41 V VTP -1.27 V 

N
* 1.1 mA/V2 P

* 0.85 mA/V2 

nN (VGB=3V) 1.71 - nP (VGB=-3V) 1.13 - 

nN (VGB=5V) 1.54 - nP (VGB=-5V) 1.09 - 

nN (VGB=7V) 1.46 - nP (VGB=-7V) 1.07 - 

*The values for N and P were extracted from the values for the correlated specific currents ISN and ISP [20]. 

For the sake of simplicity, equal values of N and P were used for the calculation of the ST threshold voltages. In order to 

emulate different feedback factors, series and parallel associations of transistors [21] were employed, as shown in Figure 8. 

 
Figure 8: Series and parallel associations of transistors to obtain feedback factors 2/0 of 1/4 (left) and 4/1 (right). 

Figure 9 shows the hysteresis width obtained either experimentally or by the difference between the values of ViH and ViL 

calculated using equations (24) and (25), which are valid for any feedback ratio. It can be readily seen that the experimental and 

analytical approaches provide similar values, especially for feedback ratios close to 1. For 10V and 15 V supplies, the experimental 

measurements and the analytical curves are in very close agreement for 2/0>1. On the other hand, the proximity of the 

experimental points from the analytical curves is not as good for weak feedback. These deviations, for 2/0<1, can be explained 

by means of some simplifying assumptions employed to determine the values of ViH and ViL. Firstly, the p- and n-networks were 

assumed to have the same strength, which is not true, especially around the ST threshold points. Secondly, identical transistors 

were assumed to have the same transconductance parameters, but this assumption does not hold in the practical case, since 

transistors with different gate voltages (the gate voltage of the feedback transistors is different from that of the input transistors) 

have differences in their mobility as well in their slope factor. The feedback ratio range of the experimental circuit was no further 

increased due to the use of discrete components and the difficulty in finding matched transistors. 
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Figure 9: Calculated and experimental results of STs built with samples of the off-the-shelf CD4007. Solid and dashed lines represent values for 15V 

and 10V, respectively. Closed circles are calculated values from equations (24) and (25), squares are calculated values from equation (15), while diamonds 

represent experimental results. 

We have run simulations of STs with high voltage (5V) thick gate devices of a 180 nm technology of the Silterra D18V process. 

The approximate parameters of the transistors required as inputs for the ST model developed herein are presented in Table 3. Note 

that the p-channel transistors are 2 times wider than the n-channel transistors to equalize the transconductance parameters of the 

NMOS and PMOS networks. For the simulations, all the transistors, except N2 and P2, have the fixed dimensions given in Table 

3. The feedback transistors N2 and P2 are either composed of series-connected unit transistors, for feedback factors of less than 

unity, or a parallel association of unit transistors for feedback ratios of more than unity. 
Table 3: APPROXIMATE PARAMETERS OF THE NMOS AND PMOS TRANSISTORS OF A 180 nm TECHNOLOGY 

NMOS PMOS 

VTN 0.814 V VTP -0.725 V 

nN
 1.61 − nP

 1.58 − 

WN 4 m WP 8 m 

LN 0.6 m LP 0.6 m 

Figure 10 shows a comparison, for 3.3V and 5V supplies, of the hysteresis widths determined either from simulation or using 

the model developed herein. It can be noted that the model we have developed is a good approximation of the results provided by 

the simulation. It is interesting to note that, for high feedback factors, the hysteresis width is an increasing function of the supply 

voltage. 

 
Figure 10: Hysteresis width in terms of the feedback factor obtained either through the model using approximations (24) and (25) (closed circles) or 

simulation (squares) of STs built with high voltage (5V) thick gate unit transistors of a 180 nm CMOS technology. Solid and dashed lines represent values 

for 5V and 3.3V, respectively. 
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6 | SUMMARY 

We have shown, for the first time, the limit of validity of the classical equations (2a) – (2b) used for calculation of the hysteresis 

width in the classical CMOS Schmitt trigger. These commonly used expressions, although having been cited by numerous authors, 

seldom serves as a starting point of a design, except for wide hysteresis width. We have developed a model based on a simple 

approximation for both the output voltages at the trip points that allows the calculation of the high and low threshold voltages of 

the classical CMOS Schmitt trigger in strong inversion, for any feedback factor. We have also presented a very simple formula for 

the calculation of the trip points in terms of the main transistor parameters and supply voltage for the case of weak feedback. 

Circuit designers now have a more accurate model for determining the hysteresis thresholds. 

Data sharing not applicable to this article as no datasets were generated or analysed during the current study
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